Relativistic Fock Space Coupled Cluster beyond CCSD: Theory and Implementation

Alexander Oleynichenko^{1,2} Andréi Zaitsevskii^{1,2}, Ephraim Eliav³

¹ NRC "Kurchatov Institute" – Peterburg Nuclear Physics Institute (Gatchina, Russia)
 ² Lomonosov Moscow State University, Department of Chemistry (Moscow, Russia)
 ³ School of Chemistry, Tel Aviv University (Tel Aviv, Israel)

alexvoleynichenko@gmail.com http://qchem.pnpi.spb.ru

23rd DIRAC Working Group Meeting

5th June, 2020

Relativistic FS-CC beyond CCSD

Current problems of the FS-RCC theory

Relativistic Fock space coupled cluster method (FS-RCC) seems to be one of the most perspective tools for high-precision electronic structure modelling of heavy atoms and molecules

- +/- solved problems:
 - transition properties (e.g. intensities) \rightarrow finite-field technique*
 - ullet intruder states problem ightarrow IH / denominator shifts & extrapolations**

open problems:

- only the FS-CCSD approximation is available now (e.g. DIRAC, TRAFS-3C)
- narrow scope of applicability: max 2 open shells

Current problems of the FS-RCC theory

Relativistic Fock space coupled cluster method (FS-RCC) seems to be one of the most perspective tools for high-precision electronic structure modelling of heavy atoms and molecules

- +/- solved problems:
 - transition properties (e.g. intensities) \rightarrow finite-field technique*
 - intruder states problem \rightarrow IH / denominator shifts & extrapolations**

open problems:

- only the FS-CCSD approximation is available now (e.g. DIRAC, TRAFS-3C)
- narrow scope of applicability: max 2 open shells

How to extend the scope of applicability and increase accuracy of FS-RCC?

- *A. Zaitsevskii et al. Opt. Spectrosc., 124, 451 (2018)
- ** A. Zaitsevskii et al. PRA, 96, 022516 (2017); A. Zaitsevskii, E. Eliav. IJQC, 118, e25772 (2018) 🛬 👘

FS-RCC Ansatz and working equations

• Wave operator:

 $\Omega = \{\exp(T)\}_N$

CCSD:
$$T = T_1 + T_2$$

CCSDT: $T = T_1 + T_2 + T_3$

FS-RCC Ansatz and working equations

• Wave operator:

 $\Omega = \{\exp(T)\}_N$

CCSD:
$$T = T_1 + T_2$$

CCSDT: $T = T_1 + T_2 + T_3$

• Amplitude equations:

$$[T^{(h,p)},H_0] = (V\Omega - \Omega(V\Omega)_{cl})^{(h,p)}_{conn}$$

complex combination of integrals and amplitudes

• Effective Hamiltonian:

FS-RCC Ansatz and working equations

• Wave operator:

 $\Omega = \{\exp(T)\}_N$

CCSD:
$$T = T_1 + T_2$$

CCSDT: $T = T_1 + T_2 + T_3$

• Amplitude equations:

$$[T^{(h,p)}, H_0] = (V\Omega - \Omega(V\Omega)_{cl})^{(h,p)}_{conn}$$

complex combination of integrals and amplitudes

• Effective Hamiltonian:

we will work with Brandow diagrams

I. Lindgren. IJQC 14, 33 (1978); U. Kaldor, Theor. Chim. Acta 80, 427 (1991); L. Visscher et al. JCP 15, 9720 (2001) 🔊 🔉

A. Oleynichenko (PNPI/MSU)

Relativistic FS-CC beyond CCSD

FS-RCC cluster operator: CCSDT approximation

example: the (0h,2p) sector

- CCSD: no spectator triples = no differential correlation
- model space extension actually does not recover all triples contributions Example: Pb atom EEs, IH-FS-CCSD gives errors of order 200 - 600 cm^{-1*}

 * A. Landau, E. Eliav, Y. Ishikawa, U. Kaldor, JCP 114, 2977 (2001)
 < □ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ > < (□ >

Full CCSDT: the achievable ideal?

Connected $T_3^{(h,p)}$ amplitudes can be defined for all FS sectors up to h + p = 3

- similar to the FS-CCSD model:
 - $h + p \leq 3 \rightarrow$ iterative solution
 - h+p < 3
 ightarrow non-iterative construction of H_{eff}
- very high accuracy
 - \rightarrow remember about incomplete basis, QED, Breit, ...
- strongly required for high-precision calculations in the (0h,3p) sector

Full CCSDT: the achievable ideal?

Connected $T_3^{(h,p)}$ amplitudes can be defined for all FS sectors up to h + p = 3

- similar to the FS-CCSD model:
 - $h + p \leq 3 \rightarrow$ iterative solution
 - h+p < 3
 ightarrow non-iterative construction of H_{eff}
- very high accuracy
 - \rightarrow remember about incomplete basis, QED, Breit, ...
- strongly required for high-precision calculations in the (0h,3p) sector

Main problem:

S.R. Hughes, U. Kaldor, CPL 204, 339 (1993) A. Oleynichenko, A. Zaitsevskii, L. V. Skripnikov, E. Eliav, 2020 submitted to Symmetry 🦻 👍 🛓 🧃 🛬

A. Oleynichenko (PNPI/MSU)

Relativistic FS-CC beyond CCSD

The CCSD+T(3) model

Let us try to estimate $T_3^{(h,p)}$ amplitudes using MBPT arguments

 T_3 amplitudes are estimated only once, converged T_1 and T_2 amplitudes are used

- only diagrams appearing in 3rd PT order contribute to H_{eff}
- quite similar to the conventional CCSD(T) for the (0h,0p) sector

The CCSD+T(3) model

Let us try to estimate $T_3^{(h,p)}$ amplitudes using MBPT arguments

 T_3 amplitudes are estimated only once, converged T_1 and T_2 amplitudes are used

• only diagrams appearing in 3rd PT order contribute to H_{eff}

• quite similar to the conventional CCSD(T) for the (0h,0p) sector

Main drawback: works very poorly except (0h,0p) [Bernholdt, Bartlett, 1999]

S.R. Hughes, U. Kaldor, CPL 204, 339 (1993) A. Oleynichenko, A. Zaitsevskii, L. V. Skripnikov, E. Eliav, Symmetry, 2020 submitted <u>to</u> Symmetry (🚊 🕨 (🚊 🕨

A. Oleynichenko (PNPI/MSU)

Relativistic FS-CC beyond CCSD

CCSDT-n models

Within the CCSDT-n framework $T_3^{(h,p)}$ amplitudes contribute to T_1 and T_2 equations

CCSDT-1: $\begin{bmatrix} T_3, H_0 \end{bmatrix} \approx VT_2$ $T_1, T_2 \leftarrow f(V, T_1, T_2, T_3) \end{bmatrix}$

- iterative solution only in low FS sectors $(h + p \le 2)$
- computational complexity is lower than for full CCSDT
- $T_3^{(h,p)}$ are to be recalculated at each iteration

CCSDT-n models

Within the CCSDT-n framework $T_3^{(h,p)}$ amplitudes contribute to T_1 and T_2 equations

CCSDT-1: $\begin{bmatrix} T_3, H_0 \end{bmatrix} \approx VT_2$ $T_1, T_2 \leftarrow f(V, T_1, T_2, T_3) \end{bmatrix}$

- iterative solution only in low FS sectors $(h + p \le 2)$
- computational complexity is lower than for full CCSDT
- $T_3^{(h,p)}$ are to be recalculated at each iteration

CCSDT-2, CCSDT-3:

- additional terms including T_1 and T_2 contribute to $T_3^{(h,p)}$
- $O(N^8)$ -terms are again avoided

SR-CCSDT-n: J. Noga, R. Bartlett, M. Urban. CPL, 134. 126 (1987) FS-CCSDT-1: S. R. Hughes, U. Kaldor. CPL, 194, 99 (1992)

A. Oleynichenko (PNPI/MSU)

modern implementation is required

modern implementation is required

the EXP-T program system

- (二)

The EXP-T program system: efficient and flexible implementation of FS-RCC models

CC models:

- CCSD
- CCSD+T(3)
- ✓ CCSDT-1,2,3
- CCSDT

Transformed integrals:

- ✓ DIRAC
- any abelian groups
- 4cDC, X2Cmmf, 2cECP
- Gaunt, properties (D. Maison, L. Skripnikov, PNPI)

Parallelization:

- ✓ OpenMP
- CUDA

A. Oleynichenko (PNPI/MSU)

(h,p) – Fock Space sectors

Coming soon:

http://qchem.pnpi.spb.ru/ru/Oleynichenko

Relativistic FS-CC beyond CCSD

- input files:
 - simple text file with CC options
 - MRCONEE, MDCINT, MDPROP
 - optional: transformed Gaunt integrals [D. Maison, L. Skripnikov, PNPI]

- input files:
 - simple text file with CC options
 - MRCONEE, MDCINT, MDPROP
 - optional: transformed Gaunt integrals [D. Maison, L. Skripnikov, PNPI]
- symmetry: relativistic DPD, real arithmetic if possible, Kramers unrestricted
 - A. Shee, L. Visscher, T. Saue, JCP 145, 184107 (2016)

- input files:
 - simple text file with CC options
 - MRCONEE, MDCINT, MDPROP
 - optional: transformed Gaunt integrals [D. Maison, L. Skripnikov, PNPI]
- symmetry: relativistic DPD, real arithmetic if possible, Kramers unrestricted A. Shee, L. Visscher, T. Saue, JCP 145, 184107 (2016)
- flexible subroutines: no limitations on excitation ranks

- input files:
 - simple text file with CC options
 - MRCONEE, MDCINT, MDPROP
 - optional: transformed Gaunt integrals [D. Maison, L. Skripnikov, PNPI]
- symmetry: relativistic DPD, real arithmetic if possible, Kramers unrestricted A. Shee, L. Visscher, T. Saue, JCP 145, 184107 (2016)
- flexible subroutines: no limitations on excitation ranks
- Transpose-Transpose-GEMM-Transpose approach to contractions idea from the CC codes of U. Kaldor, E. Eliav and co-workers see also D. A. Matthews, SIAM J. Sci. Comput. 40, C1 (2018)

- input files:
 - simple text file with CC options
 - MRCONEE, MDCINT, MDPROP
 - optional: transformed Gaunt integrals [D. Maison, L. Skripnikov, PNPI]
- symmetry: relativistic DPD, real arithmetic if possible, Kramers unrestricted A. Shee, L. Visscher, T. Saue, JCP 145, 184107 (2016)
- flexible subroutines: no limitations on excitation ranks
- Transpose-Transpose-GEMM-Transpose approach to contractions idea from the CC codes of U. Kaldor, E. Eliav and co-workers see also D. A. Matthews, SIAM J. Sci. Comput. 40, C1 (2018)
- node-level parallelism: CUDA, OpenMP

- input files:
 - simple text file with CC options
 - MRCONEE, MDCINT, MDPROP
 - optional: transformed Gaunt integrals [D. Maison, L. Skripnikov, PNPI]
- symmetry: relativistic DPD, real arithmetic if possible, Kramers unrestricted A. Shee, L. Visscher, T. Saue, JCP 145, 184107 (2016)
- flexible subroutines: no limitations on excitation ranks
- Transpose-Transpose-GEMM-Transpose approach to contractions idea from the CC codes of U. Kaldor, E. Eliav and co-workers see also D. A. Matthews, SIAM J. Sci. Comput. 40, C1 (2018)
- node-level parallelism: CUDA, OpenMP
- written in the C99 programming language only the interface to DIRAC is written in Fortran-90

A. Oleynichenko, A. Zaitsevskii, E. Eliav, *Towards High Performance Relativistic Electronic Structure Modelling: The EXP-T Program Package* arXiv:2004.03682 [physics.comp-ph]

- input files:
 - simple text file with CC options
 - MRCONEE, MDCINT, MDPROP
 - optional: transformed Gaunt integrals [D. Maison, L. Skripnikov, PNPI]
- symmetry: relativistic DPD, real arithmetic if possible, Kramers unrestricted A. Shee, L. Visscher, T. Saue, JCP 145, 184107 (2016)
- flexible subroutines: no limitations on excitation ranks
- Transpose-Transpose-GEMM-Transpose approach to contractions idea from the CC codes of U. Kaldor, E. Eliav and co-workers see also D. A. Matthews, SIAM J. Sci. Comput. 40, C1 (2018)
- node-level parallelism: CUDA, OpenMP
- written in the C99 programming language only the interface to DIRAC is written in Fortran-90
- storage of symmetry and/or formal blocks of tensors: RAM, disk, disk+LZ4

A. Oleynichenko (PNPI/MSU)

Additive scheme:

$$E_{CCSDT} = E_{CCSD,LB} + (E_{CCSDT,SB} - E_{CCSD,SB})$$

Triples contributions are evaluated using smaller basis set

Additive scheme:

$$E_{CCSDT} = E_{CCSD,LB} + (E_{CCSDT,SB} - E_{CCSD,SB})$$

Triples contributions are evaluated using smaller basis set

```
LB = "larger basis":
all-electron DCB calculations (TRAFS-3C)
QED effective potential of the Shabaev group
exhaustive basis sets
```

Additive scheme:

$$E_{CCSDT} = E_{CCSD,LB} + (E_{CCSDT,SB} - E_{CCSD,SB})$$

Triples contributions are evaluated using smaller basis set

```
LB = "larger basis":
all-electron DCB calculations (TRAFS-3C)
QED effective potential of the Shabaev group
exhaustive basis sets
```

SB = "smaller basis":

semilocal shape-consistent 2c-ECPs of N. S. Mosyagin (PNPI), 60e in core ANO-type contracted basis sets TI: 6s7p5d5f4g3h2i, Pb: 6s6p5d5f4g3h2i

Additive scheme:

$$E_{CCSDT} = E_{CCSD,LB} + (E_{CCSDT,SB} - E_{CCSD,SB})$$

Triples contributions are evaluated using smaller basis set

```
LB = "larger basis":
all-electron DCB calculations (TRAFS-3C)
QED effective potential of the Shabaev group
exhaustive basis sets
```

SB = "smaller basis":

semilocal shape-consistent 2c-ECPs of N. S. Mosyagin (PNPI), 60e in core ANO-type contracted basis sets TI: 6s7p5d5f4g3h2i, Pb: 6s6p5d5f4g3h2i

Fock-space scheme:

```
 \begin{array}{l} \mathsf{TI^{+}} \ (0h,0p) \rightarrow \mathsf{TI^{0}} \ (0h,1p) \\ \mathsf{Pb^{2+}} \ (0h,0p) \rightarrow \mathsf{Pb^{+}} \ (0h,1p) \rightarrow \mathsf{Pb^{0}} \ (0h,2p) \end{array}
```

Additive scheme:

$$E_{CCSDT} = E_{CCSD,LB} + (E_{CCSDT,SB} - E_{CCSD,SB})$$

Triples contributions are evaluated using smaller basis set

```
LB = "larger basis":
all-electron DCB calculations (TRAFS-3C)
QED effective potential of the Shabaev group
exhaustive basis sets
```

SB = "smaller basis":

semilocal shape-consistent 2c-ECPs of N. S. Mosyagin (PNPI), 60e in core ANO-type contracted basis sets TI: 6s7p5d5f4g3h2i, Pb: 6s6p5d5f4g3h2i

Fock-space scheme:

```
 \begin{array}{l} \mathsf{TI^{+}} \ (0h,0p) \rightarrow \mathsf{TI^{0}} \ (0h,1p) \\ \mathsf{Pb^{^{+}}} \ (0h,0p) \rightarrow \mathsf{Pb^{^{+}}} \ (0h,1p) \rightarrow \mathsf{Pb^{^{0}}} \ (0h,2p) \end{array}
```

Active space: 6p-spinors only

A. Oleynichenko (PNPI/MSU)

A. Oleynichenko, A. Zaitsevskii, L. V. Skripnikov, E. Eliav Relativistic Fock-Space Coupled Cluster Method for Many-Electron Systems: Non-Perturbative Account for Connected Triple Excitations 2020, submitted to Symmetry

A. Oleynichenko, A. Zaitsevskii, L. V. Skripnikov, E. Eliav

Relativistic Fock-Space Coupled Cluster Method for Many-Electron Systems: Non-Perturbative Account for Connected Triple Excitations

2020, submitted to Symmetry

 Table 1. Deviations of the calculated ionization potentials (IP) and excitation energies (EE) of neutral thallium and lead and lead cation (cm^{-1}) from the experimental values. FS-RCCSD/LB+T/SB stands for the combined scheme (8).

	State		Exptl	IH-FS-	FS-		FS-RCC	CSD/LB +	T/SB	
			[80]	RCCSD[47]	RCCSD/LB	SDT-1	SDT-1'	SDT-2	SDT-3	SDT
				Tl, grou	nd state 6s ² 6p	$^{2}P_{1/2}$				
IP			49266		-56	-38	-38	-204	-151	-32
EE	$6s^{2}6p$	$^{2}P_{3/2}$	7793		-112	23	23	1	9	-31
	Pb ⁺ , ground state $6s^26p^{-2}P_{1/2}$									
IP			121245	-168	-143	-28	-28	-190	-158	-59
EE	$6s^{2}6p$	$^{2}P_{3/2}$	14081	-196	-136	25	25	12	14	-42
	Pb, ground state $6s^26p^2$ 3P_0									
IP			59819	-543	364	-44	-285	-347	-336	7
EE	$6s^{2}6p^{2}$	${}^{3}P_{1}$	7819	-288	-302	76	5	-4	-3	-28
		${}^{3}P_{2}$	10650	-343	-235	130	129	97	102	13
		${}^{1}D_{2}$	21458	-605	-394	215	203	158	167	5
		${}^{1}S_{0}$	29467	-208	414	170	248	293	302	173

ㅁㅏㅋ@ㅏㅋㄹㅏㅋㄹ.

A. Oleynichenko, A. Zaitsevskii, L. V. Skripnikov, E. Eliav

Relativistic Fock-Space Coupled Cluster Method for Many-Electron Systems: Non-Perturbative Account for Connected Triple Excitations

2020, submitted to Symmetry

 Table 1. Deviations of the calculated ionization potentials (IP) and excitation energies (EE) of neutral thallium and lead and lead cation (cm^{-1}) from the experimental values. FS-RCCSD/LB+T/SB stands for the combined scheme (8).

	State		Exptl	IH-FS-	FS-		FS-RCC	CSD/LB +	T/SB	
			[80]	RCCSD[47]	RCCSD/LB	SDT-1	SDT-1'	SDT-2	SDT-3	SDT
				Tl, grou	nd state 6s ² 6p	$^{2}P_{1/2}$				
IP			49266		-56	-38	-38	-204	-151	-32
EE	$6s^26p$	$^{2}P_{3/2}$	7793		-112	23	23	1	9	-31
	Pb ⁺ , ground state $6s^26p^{-2}P_{1/2}$									
IP			121245	-168	-143	-28	-28	-190	-158	-59
EE	$6s^26p$	$^{2}P_{3/2}$	14081	-196	-136	25	25	12	14	-42
Pb, ground state $6s^26p^2$ ³ P_0										
IP			59819	-543	364	-44	-285	-347	-336	7
EE	$6s^{2}6p^{2}$	${}^{3}P_{1}$	7819	-288	-302	76	5	-4	-3	-28
		${}^{3}P_{2}$	10650	-343	-235	130	129	97	102	13
		${}^{1}D_{2}$	21458	-605	-394	215	203	158	167	5
		${}^{1}S_{0}$	29467	-208	414	170	248	293	302	173

the most accurate *ab initio* results for heavy non-alkali atoms

A. Oleynichenko (PNPI/MSU)

the (0h,3p) Fock space sector

- (日)

э

The (0h,3p) FS sector: three particles over vacuum

Relativistic FS-CC beyond CCSD

Protactinium: atomic energy levels

reference state: Pa³⁺([Rn]7s²)

	Configuration	Term	J	Level(cm ⁻¹)
0h3p	5f ² (³ H)6d7s ²	⁴ K	11/2	0.000
· · ·			13/2	3711.625
			15/2	7512.695
			17/2	11198.270
0h3p	5f ² (³ H)6d7s ²	⁴ I	9/2	825.415
			11/2	4121.450
			13/2	7383.295
			15/2	10049.875
0n3p	5f ² 6d7s ²	a ⁴ G	5/2	1618.325
			7/2	4713.870
			9/2	7330.815
			- /-	
0n3p	5f(2F)6d2(3F)7s2	4H°	1/2	1978.220
			9/2	5335.730
			11/2	8419.075
			13/2	11498.725
01-0-		4=0	0.00	0050 405
0n3p	5†(^F)6d^(°F)7s^	"I"	9/2	2659.405

- electronic states can be described only in the (0h,3p) sector
- EOM-CC cannot deal with such electronic states at all
- other examples: LiSr dimer, Np, Pu compounds, superactinides atoms

https://physics.nist.gov/PhysRefData/Handbook

A. Oleynichenko (PNPI/MSU)

The (0h,3p) FS sector: first tests

Almost all electronic states of the **nitrogen atom** can be represented as three particles over the N^{3+} ($1s^{2}2s^{2}$) vacuum

All electrons were correlated, cc-pVTZ basis set FSCC: $N^{3+} \rightarrow N^{2+}$ (0h,1p) $\rightarrow N^+$ (0h,2p) $\rightarrow N^0$ (0h,3p) Active space: 2p

Ground state: ${}^{4}S^{o}$ (2s²2p³)

		(deviations from FCI, cm^{-1})				
		FCI, cm^{-1}	TEA-EOM-CCSD*	FS-CCSD	FS-CCSDT	
$^{2}D^{o}$	$2s^2 2p^3$	20275	-1175	-846	-76	
$^{2}P^{o}$	$2s^22p^3$	30038	-6738	-1134	+452	

* M. Musial et al, J. Chem. Phys. 137, 174102 (2012)

► < ∃ ►</p>

The (0h,3p) FS sector: first tests

Almost all electronic states of the **nitrogen atom** can be represented as three particles over the N^{3+} ($1s^{2}2s^{2}$) vacuum

All electrons were correlated, cc-pVTZ basis set FSCC: $N^{3+} \rightarrow N^{2+}$ (0h,1p) $\rightarrow N^+$ (0h,2p) $\rightarrow N^0$ (0h,3p) Active space: 2p

Ground state: ${}^{4}S^{o}$ (2s²2p³)

			(deviations from FCI, cm^{-1})				
		FCI, cm^{-1}	TEA-EOM-CCSD*	FS-CCSD	FS-CCSDT		
$^{2}D^{o}$	$2s^2 2p^3$	20275	-1175	-846	-76		
² <i>P</i> °	$2s^22p^3$	30038	-6738	-1134	+452		

* M. Musial et al, J. Chem. Phys. 137, 174102 (2012)

to be tested and understood

- molecular applications
- high sectors
- MPI parallelization
- triples for properties (with L. V. Skripnikov)
- first public release of EXP-T

Thank you for your attention!

thanks to

Anastasia Borschevsky Timur Isaev Sergey Kozlov Leonid Skripnikov Andrey Stolyarov Anatoly Titov Lucas Visscher

welcome to our homepage http://www.qchem.pnpi.spb.ru