1. Phys. B: Av Mok Opt. Phys. 28 (1995) 1933-1961. Printed in the UK
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Abstract. Discussion of the parity violation and the break of the time-reversal invariance in
diatomic molecules has continued for a number of years. Experiments on the TIF molecule
gave one of the most stringent limits on the electric-dipole moment of the proton and on the
T-violating nuclear forces. At present, a new generation of experiments with paramagnetic_
diatomic molecules is underway. These experiments are aimed mainly at the search for the
electric-dipole-moment of the electron.

In this topical review we examine theoretical aspects of parity non-conservation in diatomic
molecules. We focus on molecular theory leaving aside the nuclear pant of the problem. In
this approach the nucleus is characterized by the number of P-odd and P, T-odd moments,
namely anapole moment, Schiff moment and magnetic quadrupole moment. Molecular theory
has to link these moments to the experimentally measured quantities, such as frequency shifts,
etc. The other possible sources of the parity non-conservation in molecules are the electron—
nuclear neutral current interactions and the electric-dipole moment of the electron. They are
also discussed in this review.

1. Introduction

Since the discovery of the unified electroweak theory the investigation of parity violation
or parity non-conservation (PNC) effects became one of the leading problems in atomic and
molecular physics, A number of reviews written on the sabject were devoted mainly to
atomic effects. A molecular PNC was discussed in a book by Khriplovich (1991) and, to
some extent, in the recent reviews by Hunter (1991) and by Mértensson-Pendrill (1992).
The consequences for the theory of the fundamental interaction following from the atomic
and molecular experiments are discussed in the review of Barr (1993). The purpose of this
review is to consider the latest development in the area, restricting to diatomics which seem
to be one of the closest goals for the new experiments in the near futyre,

PNC physics begins with the discovery of the space-parity violation (P-odd effects) in the
weak interaction process of S-decay of the nuclei (Lee and Yang 1956). Then follows the
observation of the space-parity and time-reversal violation (P, T-odd) effecis in the decay
of*the neutral K-mesons (Christenson ef af 1964). Due to the known CPT-conservation law
(C is the charge conjugation} P- and I-violation also means CP-violation.

A new era in PNC§ physics began after the creation of the unified electroweak theory,
which was completed in 1974 mainly due to the works of Glashow (1961), Weinberg (1967,
1972) and Salam (1968). The very important feature of this theory is the existence of the so-
called neutral currents, i.e. the direct weak interactions between the particles, for example,
between electrons and nucleons, or between two electrons. Unlike the case of S-decay these
interactions do not change the charge of the particles and are caused by the exchange of

§ We use the term pNC for P-violation with and without T-violation, To distiguish between them the terms P-odd
and P, T-odd are used.
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heavy neutral Z-bosons now discovered experimentally (Arnison et af 1983, Banner et af
1983).

This means, that the weak interactions and, consequently, PNC effects, are present and,
in principle, could be observed in every process in atomic, molecular or solid state physics.
However, due to the smallness of these effects their observation is possible only under
special conditions, An important step was made by Bouchiat and Bouchiat (1974) who
showed that the P-odd electron—nucleus interactions are strongly enhanced in heavy atoms
and molecules due to the high value of the electron density at the nucleus. The other
standard source of PNC enhancement is the closeness of the levels of opposite parity, which
results in strong mixing of these levels by PNC interactions. Later a series of successful
experiments were made on heavy atoms which confirmed the existence of P-odd effects
in atomic physics and helped to measure one of the fundamental constants of the weak
interaction. A full account on the experimental situation of PNC effects in atoms can be
found, for example, in a book by Khriplovich (1991) and in the recent reviews by Hunter
(1991) and Barr (1993).

The consideration above mainly concerns the P-odd interactions. A situation with P,
T-odd forces differs significantly, since up to now no closed theory has been developed
for these interactions. It was understaod early on that the existence of the electrie-dipale
moment (EDM) d for any closed system (i.e. for any free particle} means P, T-violation,
Indeed, the vector d should be oriented along the unique mechanical vector characterizing
the system—that is total angular momentum, or spin § of the particle. Vector d is P-odd and
T-even, but § is P-even and T-odd, and the proportionality d ~ s requires P, T-violation.
However, the intensive search for the EDM of the atoms, molecules and neutrons, undertaken
in the last few decades, has not led (up to now) to the discovery of the EDM, resulting in
upper bounds for the EDM of different quantum systems. The most direct experiment for
the search for the EDM is the observation of the linear Stark effect in an external electric
field. The experiments with the neutral particles—atoms, molecules and neutrons—are
much simpler since they are not wiped out by the applied electric field. Knowing the EDMs
for atoms 4, and molecules 4., {or the upper bounds for them) one can draw a conclusion
about the EDMs of the constituent particles—electrons (d,) and nucleons (d, and d,).

After the construction of the unified electroweak theory it became clear that the
experimental consequences of the existence of the EDMs of the electron and the nucleons
are equivalent to the consequences of the existence of the P, T-violating neutral-current
interaction between the electron and the nucleus. The linear Stark effect experiments
simultaneously give the upper bounds for the EDMs of the particles and for the constants of
these interactions.

To the best of our knowledge the first discussion of PNC effects in molecules was by
Bradley and Wall (1962) who measured the circular dichroism in the O; molecule and
established an upper limit for the mixing of the levels of opposite parity. The systematic
investigation of PNC effects in molecules began with the works of Sandars (1967) who
noticed that in the TIF molecule the effect of the proton EDM is strongly enhanced due to
the existence of the strong internal electric field in the polar molecules, Alternatively, one
can say that the PNC effects are enhanced due to the closeness of the rotational levels of
opposite parity. This paper gave a start to a series of theoretical and experimental works
on the TIF molecule (Harrison et al 1969, Hinds et al 1976, Hinds and Sandars 1983,
Wilkening et af 1984, Cho et af 1989, 1991) that led to one of the best upper bounds for
dp. TIF molecule experiments, however, are pot sensitive to d,, since TIF has closed shells
and the total electron spin is zero to a good approximation.

The first ‘naive’ attempt to consider P-odd effects in diatomic molecules with non-
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closed shells was made by Onishuk (1967) even before the discovery of neutral currents.
In this wotk the closeness of the A-doublet sublevels of opposite parity was used, but the
estimates, based on the charged-current interaction of the S-decay type, were not realistic.
In a more detailed way the same problem was discussed by Gaizago and Marx (1974).

A new development of the PNC theory for non-closed-shell diatomics with the ground
state 21T, ;2 was achieved in the papers by Labzowsky (1978), where P-odd neutral-current
interactions and A-doublets were considered, by Sushkov and Flambaum (1978) where
the relativistic treatment in terms of -doubling was used and also P, T-odd effects were
discussed, and by Gorshkov ez ai (1979) where P- and P, T-odd effects were studied for the
PbF molecule which is one of the candidates for future experiments.

A number of papers concerning the preparation of the beam experiment for the search
of the EDM in the closed and non-closed shell heavy diatomics (T1F, PbF, Pbl, HgF) were
published by the St Petersburg group (Varentsov and Yashuk 1983, Vatentsov et al 1985,
Varentsov et al 1986, Ashkinadzi et af 1991).

In the works by Sushkov et al (1984) and Flambaum and Khriplovich (1985) the P- and
P, T-violating interactions were considered for molecules with the 2%, ;; ground state and, in
particular, for one of the most promising, the HgF molecule. Kozlov {1985) also considered
the HgF molecule and perforimed the first semi-empirical calculation of the molecular PNC
enhancement factors. Recently the same method was applied by Kozlov and Ezhov (1994)
to the YbF molecule. A dipole moment experiment on this molecule is now being prepared
(Sauer er al 1994).

A numerical calculation of the P- and P, T-odd interaction constants within the semi-
empirical treatment of the spin—orbital mixing for the PbF molecule was made by Kozlov
et al (1987). Later these attempts were continued by Dmitriev et al (1992), where ab initio
calculations of PNC interaction constants were performed with the use of the effective core
potential (8CP) method. Kozlov et al (1991) also considered possible P-odd effects for the
diatomic molecules in the external magnetic field: splitting of the radio-frequency resonance
and P-odd Faraday effect.

A number of theoretical papers were also devoted to the PNC effects in polyatomic
molecules, in particular in mirror molecules. There was also some speculation on the role
of the PNC effects on the asymmetry of biological molecules. We do not include these
problems in our review and will concentrate on PNC in diatomics. A discussion of the PNC
effects in polyatomic molecules can be found in Khriplovich (1991),

2. P- and P, T-odd interactions

2.1, P-odd neurrai-current e-N interactions

The effective PNC potential arising due to the neutral-current interaction of the atomic
electron with the nucleon in the approximation of the infinitely heavy nucleon can be
written as (see, for example, Khriplovich 1991)
GFQ!
P Pl P2 e N
Vi =~ (~dw¥s + giieto Mot 2.1
where the indices e and N correspond to the electron and the nucleon; Gr = 1.024 x
1073/ m% is the Fermi constant of the weak interactions; m, is the proton mass; a is the fine
structure constant; ys and & are the Dirac matrices; o = (oy, &2, 03) are the Pauli matrices;
gy, gl% are the weak interaction parameters for the proton and neutron (N = p, n). Atomic
units are used throughout the paper.
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In the unified electroweak theory
g,’;,‘ = j(1—4sin’fy) gl =~1
gep = —geN = —-)L(I — 4sin® Gy) (2.2)
A= 1.25 sin? 8y =~ 0.23

where Oy is the Weinberg angle. Note that this value of 8y leads to the small size of all
constants except g/}

2.2. Effective P-odd potentials

Averaging the potentials (2.1) over the nuclear variables one obtains the following PNC
potential for the electron—nucleus interaction:

Gro
vi=vl+vf = f( Zef (Z, Nyys + g2 (Z, Yot I)n(r) (2.3)
where Z and N are the numbers of protons (neutrons) in the nucleus, I is the nuclear spin,
n{r) is the nuclear density distribution, n{r) = &(r) in the case of the pointlike nucleus.
The functions gf(Z, N} are defined as

Zg{(Z,N) = Zglh} + Ngly (2.4a)

(UnI|Wy) gf(Z, N) = {‘Pnlgezza”’)+g Za”m) (2.4b)

where Wy is the wavefunction of the nucleons in the nucleus.
According to (2.2)

i N
P = — — —— — 7¢j 2 .
8 =3~ gz TS Ow
For heavy atoms gy =~ —0.75. The quantity Qy = 223{’ is sometimes called the ‘weak
charge’ of the nucleus.
Potentials (2.3} have the following characteristic properties. First, these potentials are

short-range. The Dirac electron wavefunction at the nucleus behaves like

Yogj ~ 07 v =V +1/2)? — (@Z)? (2.5)

where n,! and j are the usual one-electron quantum numbers. Then the strongest mixing
occurs for the two states with opposite parities and j 4 j' = min, i.e. for 5;/7 and p;/2 states.

The other characteristic property is the dependence of the potential V,” on the nuclear
spin. This potential plays the role of a parity viclating hyperfine interaction. In many-
electron systems it can mix up the states with the different total electron angular momenta.
‘It is also imporiant to stress that the matrix elements of the potentials Vl’_’2 between the
states with the opposite parities are pure imaginary.

In the non-relativistic limit (2.3) transforms to

VP = gf/— ((zefo* + el Dip, 81y —igl (o° x I)lp, 6(m)-)  (26)

where [ -]z denote the commutator and anticommutator. Even for #Z <« 1 equation (2.6)
is only valid for the states with j = é As it follows from (2.5) the atomic matrix elements

of the potential (2.6) turn to zero when j > % while the operator (2.6) also has a non-zero
matrix element between 5,2 and pas2 states.
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2.3. Anapole moment of the nucleus

The potential V,/' may arise not only from the neutral-current electron—nucleus interaction
but also as the usual electromagnetic interaction of the electron with the anapole moment of
the nucleus (Flambaum and Khriplovich 1980). The anapole moment of the particle, first
introduced by Zel*dovich (1957}, looks like

a = —nfdrrzj(r)

where j(r} is the current density distribution inside the particle. Repeating the consideration
used earlier for the EDM and taking into account that vector a is P-odd and T-odd, we
conclude that the proportionality @ ~ S violates the space-parity. Hence, the anapole
moment of the nucleus arises as a result of P-odd weak interactions (both neutral and
charged-current interactions) between the nucleons.

The interaction of the anapole moment of the nucleus with the electromagnetic field,
produced by atomic electrons at the nucleus, results in an effective potential that looks
exactly like V7. Below we shall suppose that the constant gJ includes the contribution of
the anapole moment of the nucleus.

The estimates show that the corresponding constant is larger than that produced by the
neutral-current interaction, but is much smaller than the weak charge of the nucleus Q.
Thus, in principle, V¥ 3> V¥ and the anapole moment interaction can be only observed in
special cases when for some reason the interaction V.7 is suppressed. We shall see that, in
particular, this situation takes place for diatomic molecules.

2.4, P, T-odd neutral-current e-N interaction

P, T-odd neutral-current e— interactions can be constructed by analogy with P-odd
interactions. The effective P, T-odd potentials look like

iGFO!
Ng)

where g]P_ 5 are the interaction constants. Though not much is known about the order of
magnitude of these constants (see Barr 1992 for details} we may again suppose, using the

VAT = yPT L yPT = (Zgl Tvéve + 85 Ty Din(r) 27

analogy with P-odd interactions, that gi*7 = g7 and, consequently, V[ » V)T, The
non-refativistic limit of (2.7} is
pr_Gra® . pr . pr PT( e
=57 (i(Zg, "o + 8 Il 8(MI-+ g, (o x I)p, 6(r)l4). (2.8)

The existence of the potential V77 leads to the linear Stark effect in an atom or molecule

in the external field &,,,:

OfrEexen) (n1V T 10)
Ey—E,

AEg(VPT) = 22 { (2.9)
n#0

where 7 is the radius vector of the electron and the sum runs over the states |n} with
opposiie parity. Here for simplicity we only consider one-electron systems. Generalization
to the many-electron case is trivial since all the operators involved are of the one-electron

type.
Note, that the matrix elements (V7-T), unlike the matrix elements {V ), are real.
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2.5. Electric-dipole moment of the electron

The same effects which follow from the existence of the V7 interaction can be produced
by the EDM of the electron. In principle, the interaction of the EDM of an electron with the
external electric field looks like

0 o

However, if we consider the EDM of any charged particle (electron) inside the neutral system
{atom, molecule), the internal electrostatic forces compensate the external force acting on
the charged particle; otherwise the electron and the whole system should be moved by the
electric field which cannot occur for neutral systems.

This means that we should look for the total interaction that is zero:

Hi = —d.Ex, d, =de}’0E L= ( o 0 ) .

Oire, n|d.£.\0
_(Oldegcxrlo) _ 22( !T extin)( | 3 mtl ) =0 (210)
Eo~ E,
n¥lQ
where the operator £,y = —VU and U is the internal electrostatic potential. The second

term in (2.10) represents the interaction of EDM with the internal electric field arising due
to the polarization of the system in the external fieid.

Equation (2.10) is known as Schiff’s theorem (Schiff 1963). It holds in the frames
of the non-relativistic quantum mechanics and can easily be proved if we write down the
matrix element {#|d,&;,; [0} as

(nlde&ine {0} = —i{nld.Ip, Ho)-10) = KEp — Ep)}{n]d.p|0) @.11)

where Hy is the Schrodinger Hamiltonian of the atom (molecule), p is the electron
momenturmn operator. Inserting the expression (2.11) in the left-hand side of (2.10}, using the
quantum mechanical commutation relations for r and p operators and the closure relation
for the eigenstates |n) of the Hy operator, we immediately obtain zero.

However, Schiff’s theorem is viclated if the relativistic effects are taken into account.
The reason is that the relativistic treatment includes magnetic forces which also take part
in the equilibrium, i.e. the resultant electric field at the electron is non-zero. The residual
EDM of an atom or molecule, caused by the EDM of the bound electron, appears to be even
strongly enhanced compared to the free-electron EDM (Sandars 1965, 1966). This residual
EDM and the corresponding Stark effect can be written down explicitly if we use the relation
(see Khriplovich 1991)

(r|ZE;n|0) = 1{n|[Zp, Hy]-10})

where Hp is now the Dirac—Coulomb Hamiltonian, i.e. the relativistic many-electron
Hamiltonian with Coulomb interaction between the electronsi. Then the residual EDM
interaction with internal electric field looks like

Vé= —d,(yy— NEE (2.12q)
and the corresponding linear Stark splitting is
O|rE., —DEEq|0
AEs(d,) = _Mez (O]r&exe|n) (nl (o YEE |0}
n£Q EO - Eﬂ

The high value of the electron density at the nucleus leads to the enhancement of the electron
EDM in heavy atoms. The second term in the right-hand side of (2.124) does not contain

—de0(vo ~ DEEe 10}, (2.120)

t More accurately, this interaction should be a projected Coulomb interaction written in the ‘no virtual pair'
approximation {Sucher 1980).
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this enhancement and for this reason is much smaller. The other possible source of the
enhancement is the presence of the small energy denominators in the sum over n in (2.125).
In particular, this rakes place in diatomics, where Eq — E, may be of the order of the
molecular rotational constant. Moreover, in this case the Stark matrix elements {0|r&qy, |n)
may be comparable with Ey — E, and the non-perturbative treatment of the Stark effect is
required.

2.6. Electric-dipole moment of the nucleus

Schiff’s theorem prevents also the direct observation of the EDM of the nucleus dy:

0lrE, dy & |0
—dyEor _22{ [T Eexe|n) {nldy Ein; |0} -0, (2,13)
n20 Ey— E,
In this case the main residual effect arises due to the difference between the charge
and EDM distributions p, and py inside the nucleus (Schiff 1963). We have to replace the
interaction —dy&;,; by

VS =—dy f Loa(r’) — pg (r)}Ein: (v} Ao’ (2.14)
where both p, and o4 are normalized to unity.
The one-electron operator &, (r’) looks like &, (r") = V'——=—. Expanding this

[r=r"

expression in powers of r'/r and retaining only the lowest non-vanishing contribution of
order (+'/r)?, one can replace (2.14) by the contact-type interaction of the electrons with
the Schiff moment & of the nucleus:

VS = (SV¥(P) (2.15a)
S=-3ndy [ [pa(r") — pa (N dr' (2.156)

Expression {2.15a) can be used with the non-relativistic wavefunctions as well as with
the Dirac functions for the finite nucleus. For the latter case one can also use the more
accurate expression which does not include expansion in powers of r'/r (Méirtensson-
Pendrill 1992)

VS = _dNr% fo [pa (') — pg (P dr’ . (2.15¢)

For r > ru, where ry is the nuclear radius, here the integral vanishes because of the
normalization condition for densities.

In the case of a nucleus with one valence proton within the shell model of the nucleus
the Schiff moment looks like (Khriplovich 1991)

4 (K + 1)
S=dyrl—m " .
BTN T+ 1) (2.16)
where & = (—1)"+/271(7+ 1) and ! is the orbital angular momentum of the valence proton.

The additional assumption in the derivation of (2.16) is that r? = r} = 3r3, where r? and
r§ are, respectively, the mean-square radii of the charge and dipole distributions inside the
nucleus. Note that this expression vanishes for I = % and [ =0.
The residual interaction of the atomic EDM with the external electric field is
J
AEg(S) = 2§ )3 {OlrEexeln) (I VE()|0) _ @.17)
- I rd Ey—E,

Note that the Schiff moment of the nucleus may also arise due to the P, T-violating
interactions between the nucleons inside the nucleus (Khriplovich 1991).
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2.7. Magnetic quadrupele moment of the nucleus

Equations (2.15) hold equally for paramagpetic and diamagnetic atoms and molecules.
However, for non-closed shell (paramagnetic) systems there is another way of producing
atomic EDM from the nucleon (proton) EDM. It is the interaction of the magnetic quadrupole
moment (MQM) of the nucleus with the magnetic field of the electrons. This method usually
appears to be more effective (Khriplovich 1976).

The MQM tensor for an arbitrary system is defined as

My = fdr(riek.n.m + T € nm )0 im (2.18)

where j, is the component of the internal current distribution, €y, is the unity
antisymmetric tensor. The proportionality should hold:

Mig~ (LI + Lk — 3801 + 1)) = Tix (2.19)

where I is the total spin of the system, since the tensor T;; in (2.19) is the unique second-
rank irreducible tensor which can be constructed from the components of the vector I.
Comparing (2.18) and (2.19) one can see that the existence of M;; violates P- and T-
invariance.

The MQM M can be defined by analogy with the electric-quadrupole moment:

3 0M

Yir=3T@r-n

Tk - (2.20)

For nuclei with one valence proton calculations give (Khriplovich 1976)

_ad, @1 =1)(3 - K)

M 21
mp 1+1 221
where K was defined in (2.16).
The interaction of the MQM with the electron magnetic field looks like
VM = M4 Fiy (222)

where F; is a P, T-odd electronic tensor
1
Fix = %a’mvn(em.n.r'vk + Gm.n.kvf)'; .
Since the interaction VM is magnetic it does not obey Schiff’s theorem. Then the linear
Stark effect produced by this interaction is
Olr& ex: [0} {0 | T F1.410)

My _2_M {
AEg(V )_31(2“1); 5 TE ) (2.23)

Due to the presence of the ¢ matrix in VM this interaction only works for paramagnetic
atoms and molecules. As was mentioned above, usually

AE (VMY > AEg (V). (2.24)

Again we should note that the P, T-violating interactions between the nucleons inside the
nucleus also give rise to the nucleus MQM (see Khriplovich 1991).
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3. Selection rules for PNC operators

3.1. Coupling schemes

The main advantage of using molecules instead of atoms is the existence of the close spin-
rotational levels of opposite parity. It is also important that the spin-rotational levels of the
electron vibrational ground state have narrow widths,

Below we are going to discuss selection rules for matrix elements of P-odd and P, T-odd
operators between spin—rotational levels of polar diatomic molecules. First of all we shall
briefly review the main coupling schemes and corresponding molecular quantum numbers
for diatomics (for the details sce, for example, Herzberg (1957) or Landau and Lifshitz
(1979)}.

In analogy with atoms where states are classified by the orbital angular momentum
L, electron spin S and total electronic angular momentum j, for diatomic molecules the
corresponding projections on the molecular axis are defined as

A={L-n Z={(5 n} 2={j.-n) 3D
where angular brackets mean averaging over the electronic state, j. is used instead of j to
distinguish it from the total angular momentum of the molecule and n is the unit vector
directed along the molecular axis from the positively charged atom to the negative one. If
quantum numbers A and T are well defined, then 2 = A 4 Z.

Three Hund’s coupling cases correspond to the different relative strength of the spin—
axis, spin-orbit and spin—rotation interactions:

Case a. The spin—axis interaction dominates. In this case all three quantum numbers
from (3.1) are well defined. The total angular momentum of the molecule (without nuclear
spins) in a state |A, I, Q) is given by

F=N+{nn=N+{A+EZn=N+On (3.2)
where N is the rotational angular momentum of the molecule as a whole.

Case b. The spin—rotation interaction dominates. In this case the projection X is not
defined, but there are two additional quantum numbers S and X:

j=N+An+8S=K-+85. (3.3)
For the heavy molecules this case takes place only if A = 0.

Case ¢. The spin—orbit interaction dominates. The only difference from the case a is
the absence of the quantum numbers A and .

Electronic states which differ by the signs of the quantum numbers A, T and £ are
degenerate. Because of the large energy difference between the non-degenerate electronic
states, we will only be interested in the selection rules for the weak interaction operators
within the degenerate subspace.

3.2, Selection rules for coupling case ¢

1t is convenient to start from Hund's case ¢. If |§2| = 0 there are two degenerate states [$2}
and |—£2). The most obvious selection rules can be found by irreducible tensor analysis. For
electronic scalars, such as V.£, AC = Q. For electronic vectors, such as VZP , A =0, £+1.

Other selection rules correspond to the behaviour of the operators under spatial
reflections and time reversal. It is seen from (3.1) that A, ¥ and £ change sign under
both time reversal and spatial inversion (or reflection in any plane in the molecular frame
of reference). Thus

P2} ~ |-£2) T|2) ~ |—-£). (3.4)
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It follows then, that the operator V,P does not have diagonal matrix elements. Indeed,

Qv £ (—a-vPl-o) & —@vfie) =o0. (3.5)

Here we take into account that spatial inversion P changes the sign of the operator V7,
while time reversal T does not. Since AQ = 0 for V7, we conclude that this operator does
not have non-zero matrix elements in the subspace of states |2} and |—}.

In order to obtain selection rules for the operator V.7, we shall apply symmetry
operations to its electronic part, which is a 7T-odd polar vector. By applying the reflection
operation in the plane passing through the molecular axis o, and time reversal T we have
again

v T
@V 10) 2 (-Q1V 1-2) = —(Q|V;1Q) =0, (3.6)
But operator Vf , in contrast with operator V.*, has non-diagonal matrix elements:
Qv -9y #£0 |2] = % . 3.7

Taking into account that operator iz",‘p‘T is an electronic P, T-odd scalar and operator
Vzp T s an electronic T-even polar vector one can easily show that (Sushkov and Flambaum
1978, Gorshkov et al 1979):

@V Ty £0,@£0 (@VTI-Q) =0 (3.82)
@V, #0 viTl-y =0, #0. (3.8b)
Selection rules for the operators V¢ and V® are the same as (3.8a2) and (3.80),

respectively.

Similar analysis for the operator V* shows that it also has non-zero matrix elements
in the subspace of states |2} and |—£2} provided that 2 7 O (Sushkov et al 1984). This
last requirement is natural since the operator VM describes the interaction of magnetic
quadrupole moment of the nucleus with the electronic magnetic field.

Selection rules obtained in this section are summarized in table 1, where the signs ‘—’
and ‘4’ denote zero and non-zero matrix elements, respectively.

Table 1. Selection rules for operators of weak interactions. Signs ‘=" and ‘4" denote zero and
non-zero matrix elements, respectively.

Operator
State ve vh ovPTvs oyt yd yM
=0 - - + - -
o= - + 4 + +
>3 - - + + +

3.3. Selection rules for the coupling case a

Above we formulated selection rules for Hund’s case ¢. Now we shall show that they can
be applied to case a as well. It would appear that the existence of the quantum numbers
A and £ would result in additional selection rules for the PNC operators. Actually this is
not so. Indeed, matrix elements of these operators depend mainly on the electronic wave-
function in the vicinity of the heaviest nucleus where relativistic effects are not small. Thus



Parity violation effects in diatomics 1943

the non-relativistic coupling described by the quantum numbers A and I is not valid here

(Kozlov 1985).
For example, consider the simple single-eleciron wavefunction with quantum numbers

A=0,L=Q=1L
[0, 3, 3} = als}|3) + bipo)|3) (3.9

where {s) and [pg} are atomic orbitals and |1} is a spin function. One can make the
transformation in (3.9) from the /, my, s, m, representation to the /, s, j, m; representation:

1 2
b Y=alsn b+ o(- Tl 4 B d). @0

Equations (3.9) and (3.10} are identical if the radial parts of the atomic orbitals satisfy
the conditions: R; = R, and R, = Ry, = Ryp,,. This is approximately true for the large
distances, but according to (2.5}, in the vicinity of the Coulomb centre Ry, , > R,,, and
the latter can be omitted:

=

b
0.1, 1) = alsi, §) - 7§|P1/2\ 3)- (3.11)

It is now clearly seen that the right-hand side of this equation does not have quantum
numbers A and I even approximately. It then follows that the selection rules for this
function will correspond to Hund's case c.

3.4, Selection rules for the coupling case b

Hund’s case b differs more significantly from cases ¢ and ¢. But, for the most interesting
particular case A = 0 and § = 1 there is a simple connection between them. Transition
to case b corresponds simply to the change of the quantization axis for the electron spin.
It only results in the mixing of the diagonal and non-diagonal matrix elements of the PNC
operators within the same degenerate subspace and thus does not influence the selection
rules presented in table 1 for || = % This mixing can easily be treated in terms of
the effective electron spin 8" and spin-rotational Hamiltonian H,,. which are introduced in
section 4.

4. Spin-rotational Hamiltonian

4.1. Effective spin

The spin—rotational Hamiltonian H;, provides a convenient description of the spin—rotational
degrees of freedom of a molecule in a particular electron vibrational state. In the first ap-
proximation it can be obtained by averaging of the molecular Hamiltonian over the electronic
and vibrational wavefunctions. High-order terms of the adiabatic perturbation theory can be
included as well. In this approach parameters of the operator H, are defined in terms of the
electron vibrational matrix elements. On the other hand, these parameters can be determined
from experiment by the analysis of the spin—rotational spectrum. It allows us o use the
method of the spin-rotational Hamiltonian without complicated electronic calculations.

If a molecular electronic state is two-fold degenerate (© # 0), a comresponding electronic
degree of freedom must be included in the Hamiltonian H;,. For the case of |Q] = % it is
convenient to define an effective spin S’ by the following equalities:

S5, 19) = Q) Si|e=Fi === SL=8%8) 4.1)
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where £, and ¢ form the molecular frame of reference with the -axis directed along the
vector . From equation (4.1} it is seen that 8 = % In Hund's case b for A = 0, 8 is
equal to §.

Apart from the operator of effective spin, in the expression for H, operators
n, J and nuclear spins Iy, I can enter. The advantage of the definition of the spin—
rotational Hamiltonian in terms of these operators is that their matrix elements are well
known (see Landau and Lifshitz 1977) and thus calculation of the spin-rotational spectrum
is easy.

4.2. Electronic state 2 =0

The spin—rotational Hamiltonian for this case was introduced by Boeckh er al (1364) who
carried out a beam experiment on the TIF molecule. It looks as follows:

Hg. =BJ? + ahJ+ eahJ+ C3I1.hIz +egify — DnE+ (uyd + i Iy + w2 )B
4.2)
Rix = ning — 38 (4.3)

In equation (4.2) £ and B are external electric and magnetic fields. Interaction between
nuclear spins I, and I, is divided into tensor and scalar parts. For the TIF molecule
parameters of this Hamiltonian are given in table 2. Note that B 3» ¢; 3 |cp3.4]. Stark
and Zeeman terms become comparable with B and ¢; in the fields £ ~ 10* V c¢m™!
and B ~ 10% Gs, respectively. For the TIF molecule both nuclei have spin~% and the
dimension of the subspace corresponding to the particular quantum number J is equal to
QL+ NDRLA DRI+ 1) =427 + 1).

Table 2. Constants of the spin-rotational Hamiltonian for the TIF molecule,

Constants B cr cz 3 cy D wr ui? 17}

Units®  (GHz) (kHz) (kHz) (kHz) (kHz) MHz V=P em™D) (Hz Gs™1) (kHz Gs™!) (kMz Gs~!))

Values  6.68992 126,03 17.29 0.70 —13.30 2.1286 35 1.2405 2.003 63
1.2285

* Numbers are given for 2°5T1 and 20371, respectively.
b Frequency units for energy are used.

As was shown in section 3, only two operators Vi‘p T and VS have non-zero spin-
rotational matrix elements. Corresponding ferms in the spin—rotational Hamiltonian have
the form (Coveney and Sandars 1983):

HET = (W gy 4+ WoS) I 4.4)

The expression in the right-hand side of (4.4) is obviously P, T-odd. Generally speaking
there are also similar terms ~Tsm, but as far as Zy; > Zr and both constants W ~ Z2,
they can be neglected. The Hamiltonian

Hy = H + H2T (4.5)
provides a complete description of the behaviour of the diamagnetic molecule in the ground
electron vibrational state in the external electric and magnetic fields. As parameters of HS
are known from the experiment, the only theoretical problem is to calculate constants Wz‘p 7

and WS, This calculation appears to be rather difficult and is discussed in section 6 in some
detail.
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4.3. Electronic state 3 = 5

Almost all paramagnetic molecules which were discussed in the literature in connection with
the PNC interactions have either %, /2 or 1, ;2 ground states, i.e. [A] =0,1 and |Q| = %

The presence of the non-zero effective spin results in a number of new large terms
in the operator HS. Angular momentum J now includes rotational angular momentum
of the molecule as a whole N and electronic angular momentum J, (see equation (3.2)).
Rotational energy is equal to

H, =BN?=B(J - J)* = BJ*-2BJJ. + BJ?. (4.6)

Up to the term independent in J this expressmn can be written with the help of effective
spin (Kozlov et al 1991)

H =BJ*+A8'J Ch))
where A is the Q-doubling constant
A =2B(Q = 1|y + Jop|2=—1}). (@.8)

It shouid be mentioned that (4.7} can be used not only in Hund’s cases a and ¢, but in
case b (A = 0) as well. For the latter transition to the standard notation is done by the
substitutions

J=N+8 A=-2B4y {4.9)

where y is the spin-doubling constant.

Apart from the second term in (4.7) there are three new terms which describe hyperfine
interactions of the effective spin with two nuclei and with external magnetic field while the
interaction with the external electric field remains unchanged:

H) =BJ*+ AS'J + NAS + LA,S ~ Dné + 1oS'GB + -+ (4.10)

where [¢g is the Bohr magneton. Due to the molecular symmetry, all tensors in this formula
are axial and have two independent components each. Dots stand for the terms similar to
those in (4.2). As they correspond to the interactions of nuclear spins with each other and
with the external field /5, they are much smaller than terms explicitly writien in (4.10) and
usually can be neglected.

According to table [ there are several new P-odd and P, T-odd terms here as well.

Operators V) T and V4 produce expression similar to (4.4) with substitution of 8" instead
of I]
(WP g + W4d,)S'n. (4.11)
Interaction VM is described by the tensor term (Sushkov et al 1984)
-WMAM, -
—_—— 5T 4.12
2hehL -1 .12

where the nuclear tensor f‘l and the constant M, are defined by (2.18)42.20). Again we
arg omitting interactions on the second nucleus similar to (4.11) and (4.12) assuming that
Z1 > Z,. Note that expression (4.12) differs from zero only for 7} > 1. In this case the
interaction of the electric quadrupole moment of the first nucleus Q) with the molecular
electric field has to be added to (4.10) (Azuma er af 1990):

‘”QOQ] 2
———nTin. .
TR 4.13)
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There is also a P-odd term corresponding to operator V.7, Flambaum and Khriplovich
(1985) showed that it can be written as follows:
Wrgfnx ST, 4.14)

Combining together (4.10)+(4.14) we obtain the final expression for the spin—rotational
Hamiltonian for the molecule in the electronic state |§2] = %:

g0

HS + HE + HET = BI* + AS'T + LA |S' + LA, — —2=1__nfin—Dné
8NQ2L - 1)
+uoS'GB+ Wl gln x §'L + (W gy + Wid,)S'n
"VMM] o

This spin-rotational Hamiltonian includes a relatively small number of electronic
parameters and describes the spin-rotational spectrum of the molecule. In particular, it
describes transition from Hund's case ¢ (|A| < B) to the Hund’s case b (|A+2B| = |v] K
B). It also describes more exotic cases. For example, if (A, — A;.1| > B), then for the
lower rotational states nuclear spin I is quantized on the molecular axis together with the
effective spin 8’. This case can take place for a molecule such as Pbl, with two heavy
nuclei (and thus very small B) and strongly anisotropic tensorA,.

Experimental values for the constants of the spin-rotational Hamiltonian for several
molecules with ground state 2, /2 are given in table 3, For molecules MF, M = Ba, Yb,
Hg or Pb the following relations iake place:

B~ Ayl ~ At > [A2)] ~ |A2.L]. (4.16)

For this reason, for heavy metal isotopes with non-zero spin the lower part of the
spin—rotational spectrum differs greatly from the pure rotational one due to the hyperfine
interaction with the spin f;. For the spinless metal isotopes spectrum it is mostly rotational
with Q-doubling for 2ITy; states and y-doubling for 2Zy; states. If one of the nuclear
spins is equal to zero and the second one is equal to 3, there is an analytic solution for the
eigenvalue problem for operator Hf, in the absence of the external fields (Kozlov et af 1987).

Table 3. Constants of the spin-rotational Hamiltonians for paramagnetic molecules.

Constants®
Molecule B et Ay Ar Ay Ayt Gy Gy
137g e 6471 83.3 2376 2301 67 59 20010 1.9950
137gaR! 6480 81.03 2453 2401 - — — —
171 ypyde 7237 — 7822 7513 220 134 1.9975 1.9954
139HpFt — — 22621 21880 — — 1.993 1.961
WIHpEh —_ — -8054 =7 760 — — 1.993 1.961

2 All constants with the exception for &-factors are in MHz,
b For connection with A see (4.9).

¢ The sign of this constant is unknown.

4 Huber and Herzberg (1979).

® Knight et al (1971).

T Rizlewicz et af (1982),

£ Van Zee er al (1978).

b Knight er al (1981).
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5. PNC experiments with diatomics

The list of molecules which were mentioned in the literature in connection with the PNC
experiments is rather long, In this section we shall name some of them and formulate
several requirements for the molecules to be used in PNC experiments. We shall also give
a brief description of the possible PNC experiments.

Since the pioneering works of Sandars (1965) and Bouchiat and Bouchiat (1974) it is
known that atomic matrix elements of the weak interactions depend strongly on the nuclear
charge Z: (VF), (V)T), (VS), (VM) ~ 2% (v]), (v]Ty, (V) ~ Z3 (see sections 2 and
6 of this review). It is clear that the same Z dependence must take place for the electronic
matrix elements of the PNC operators in molecules. For this reason almost all molecules
which were proposed for PNC experiments include atoms with Z > 50. The search for
P, T-odd effects requires the molecule to be polarized in an external electric field, thus
favouring polar molecules.

These two requirements are met by molecules of the MX-type where M is a heavy metal
and X is a halogen, oxygen, or sulphur.

5.1, Experiments for measuring the Schiff moment and the constant gzp T

According to the selection rules from table 1, these measurements can be carried out with
£2 = 0 states. This allows the use of chemically stable diamagnetic molecules in the ground
state. The technique of molecular beam spin resonance with two separated oscillating
fields provides a very high accuracy for the measurements (Ramsay [963). Sandars (1967}
suggested the TIF molecule as the best candidate for this experiment. This molecule meets
both requirements formulated above; it is relatively easy to produce and detect and has a
simple spin—rotational spectrum since both nuclei are spin~%.

There is only one argument against the use of the TIF molecule (Khriplovich 1991)
resulting from nuclear physics. Both stable isotopes of the Tl nucleus have one unpaired
proton in the state 3s,/,. Then, equation (2.16) gives & = 0, and within the shell-model
contribution of the EDM of the proton to the Schiff moment of the nucleus is proportional
to the difference a",’.,2 —r}. But r, & ry and it is difficult to make a reliable estimate of this
difference. This results in a large uncertainty in the interpretation of the TIF experiment in
terms of the EDM of the proton in addition to the uncertainty of the molecular calculations.

This problem is absent for nuclei with a valence proton in any state different from ns; 2.
From this point of view it can be better to work with the CsF molecule. Molecular beams
of CsF have been produced and its polarizability was measured {(see Huber and Herzberg
1979). The disadvantages of this molecule are the lower Z of Cs in comparison with Tl
and the more complicated spin—rotational spectrum (because of J = %) resulting in a lower
population of a given level. Also, accurate molecular calculations for CsF can be even more
difficult than for TIF.

5.2. Experiments for measuring constants gf T d, and M in the ground state

For these experiments one needs to use £ 3 0O states, With very few exceptions 22 #£ 0
ground states take place only for molecules with odd numbers of electrons. In this case
usually {2 = £ and A =0 (*Z), states) or {A] = 1 (*II);, states). In the single-particle
approximation all but one electron are coupled and the single uncoupled electron occupies
either a )2 or 7y, orbital. These molecules are chemical radicals and are stable only in a
beam. Experiments of the same type as for the TIF molecule were proposed for PoF (211, 2),
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HgF (*T;2) and YbF (*Z;2) molecules (Varentsov ef al 1985, 1986, Sauer et al 1994).

Atomic matrix elements of the PNC interactions decrease rapidly with the growth of the
quantum numbers [ and j. For the contact operators V,';7 all matrix elements other than
{s1/21V |p12} are zero. The expansion of the o> orbital over the atomic basis set includes
both 53,2 and py/2 terms, while expansion for the 7, orbital starts from the p2 term. That
is why the matrix elements of the contact operators for the 2[1y state are proportional to
the spin—orbital mixing of o1/, and 71/, orbitals. So, we can expect larger PNC effects for
the 22]/2 state,

The case |2] > — deserves special consideration. According to the selection rules
the matrix elements of operators VP T v4 and VM are not zero but they are strongly
suppressed. On the other hand, polanzablhty of these molecules in the low-field limit is
very high due to the extremely small 2-doubling (splitting of levels with opposite parity).
As a result, molecular Stark shifts calculated with the help of (2.9), (2.12b) and (2.23) will
be larger than for the case [§2] = % This argument can be found in the literature but,
from our point of view, is misleading. In contrast with the atoms, where the low-field limit
{when these equations are valid) can be used for all external fields available in laboratory
conditions, heavy polar molecules can be completely polarized in the field ~10* V em™
evefi if 2] = % This means that the levels of opposite parity are completely mixed by
the external field and the P, T-odd effects are determined solely by the electronic matrix
elements of the £, T-odd operators which are maximal for the {§2] = -12- states.

High polarizability can be found not only for molecules with [2| > % but also for those
with two heavy atoms, such as MBr or MI. There is no suppression of the electronic matrix
elements here and one can expect the same P, T-odd effects in the lower fields. But,
as we saw in section 4, the lower part of the rotational spectrum is strongly influenced
by the hyperfine interaction and the spacing belween levels of the opposite parity can be
changed significantly. There can even be some new selection rules for these molecules
due to the quantization of the nuclear spin on the molecular axis. On the other hand, all
stable isotopes of the heavy halogens have nuclear spin / = % This, together with a small
rotational constant, results in a large statistical sum and thus the low population of a given
level. As a result, it is hardly useful to make the PNC experiments on the molecules with
heavy halogens.

5.3. Experiments for measuring constants g;p T, d, and M in optical transitions

From the experimental point of view, it is much easier to work with the chemically
stable molecules than with radicals. This also makes it possible to do experiments in
a cell instead of a beam. That is why, the idea of Sushkov and Flambaum (1978) to
observe the Faraday rotation in an external electric field looks very attractive. One needs a
[©2 =0} — |2 = 1) transiticn to observe this effect and it is sufficient here to have PNC
mixing of the levels of opposite parity in the excited electronic state. The second important
step was made by Barkov et al (1988) who realized that the sensitivity of this experiment can
be increased by three orders of magnitude if one can saturate the corresponding transition.
Actually it is the direct analogue of the well known nonlinear Faraday effect.

Flambaum (1987) and Barkov er al (1988) suggested looking for this effect in the
Iy — 3% (16025 cm™!) transition of the PbO molecule. The excited state 2] = 1
has two unpaired electrons and there is no suppression of the PNC matrix elements if at
least one of them occupies the oy orbital. However, in the PbO molecule it is more
likely that unpaired electrons occupy two different m orbitals. As a result, one can expect
approximately cne order of magnitude suppression of the PNC effects.
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5.4. Experiments for measuring the constant g5

There is particular interest in measuring the constant gf in the hydrogen molecule where it
is directly associated with the proton. Corresponding optical experiments were suggested by
Neronov and Barzakh (1978) and Gorshkov et al (1978). More detailed calculations were
made by Kopp (1983) for the mixing of 3E}"‘(}:m:"a) and *T17 (ortho) metastable states of
the hydrogen molecule by the interaction VP Unfortunately, for the hydrogen molecule the
constant W{ is of the order of 10> Hz and all these experiments are extremely difficult.

P-odd effects in the heavy molecules are caused by the anapole moment of the nucleus,
As we shall see below constant sz can reach the order of 10° Hz for PbF and YbF
molecules and even more for HgF. The P-odd correlation (n x 8§'I) can be seen in the
beam experiment similar to the EbM one. This correlation is more complicated than the
P, T-odd correlation (S'r) and can be observed only if the coupling of spins S and I is
broken, i.e. in the strong external field.

One can also look for parity non-conservation in the M1 transitions between spin—
rotational levels. For experiments of this type it is convenient to introduce a parity non-
conservation rate
Az

| Amg®
Amy

P = =
Am

where AEYC is the E1 transition amplitude induced by the P-odd interaction, Ag; and Apy
are the 0rd1nary El and MI transition amplitudes and &% is the mixing coefficient of the
states of opposite parity. It is natural to assume that Agy ~ D&y, Amy ~ oG 1 Bo, where &
and By are the amplitudes of the oscillating field (note that for the microwave experiments
these amplitudes are not necessarily equal). The coefficient £” is of the order of Wy gf/B.
Then :
P
o DR h o
#oG 1 Bo

Numerical calculations proved that this estimate is close to the averaged P value for
the spin—rotational spectrum of the PbF molecule but the individual values can differ very
strongly (Kozlov 1988).

In principle, it is possible to achieve further enhancement of the P-odd effects by
applying a constant magnetic field to cross the spin-rotational levels of opposite parity
(Kozlov et al 1991). Let ug look at this phenomenon in some detail.

Diagonalization of the spin-rotational Hamiltonian for PbF and HgF molecules shows
that there are several crossings of the levels of opposite parity below 10* Gs. If projection
of the total angular momentum on the external field for the crossing levels { and %
is the same, the interaction V,” transforms these crossings to pseudocrossings with the
splittings equal to 2|(i|V2‘° |k)|. Calculated values for the magnetic field and P-odd matrix
elements at the crossing points are given in table 4. In these calculations where it is
possible experimental values from table 3 are used for the parameters of the spin-rotational
Hamiltonian, Parameter W{ as well as other not measured parameters of the operator H,,
are taken from the molecular calculations (see section 6 and table 7).

At the crossing points P-odd effects are determined by the ratio W gf /T rather
than parameter P, where I' is the linewidth. So, for the El1 spin-rotational transition
the line profile will be a double-hampered curve with the peak-to-peak distance equal
to 2{¢i]V,"1k}]. For the beam experiment I' = 1/r, where T is the time-of-flight and
2|(i| VI Ik)|/ T ~ Wfgl /T can be of the order of unity. The main problems with this
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Table 4. Matrix elements of the operator Vf at the psendocrossings of the spin-rotational levels
of opposite parity for PbF and HgF molecules in external magnetic field.

Molecule? Crossing levels B li':'_‘_;z;'fﬂ
i k (G  (Hz
PEF GL3-34H  Gri-i-y 9w 360
HgF Lindii-) i2ibey 22 110
HgF Linii-) 0.4.2.5. 4. 4) 2.99 90

* Parameters of the spin-rotational Hamiltonians are taken from tables 3 and 7.

b For PbF molecule levels are labelled by the guantum numbers: J, Fy, F, Mr and p, where
Fy=Jd4+5, i = F+I; and p is parity. For HgF molecule levels are labelled by the quantum
numbers: Fi, 7, N, F, Mp and p, where F| = S+ I}, Fy = Fy + Iy and F = N + F3. For
both molecules all quantum numbers other than Mr, and p are good only in the low-field limit,

experiment are associated with the stray electric and magnetic fields: while the former
mimics the P-odd splitting, the latter moves the system from the crossing point.

6. Electronic calculations

6.1. TIF molecule

As we mentioned above both experimental and theoretical studies of the P, T-odd effects
in diamagnetic diatomics were restricted to the TIF molecule. Here we are going to look
at the main features of the method of calculation developed by Hinds and Sandars (1980a),
henceforth referred to as HS.

The molecuiar past of the calculation is performed within the non-relativistic Hartree—
Fock—Roothaan method in the basis set of Slater-type atomic orbitals {(A0s). Operators vs
and !-’2'p T are both of the contact type and only o-type molecular orbitals (MOs) contribute to
their matrix elements. At the nucleus ¢ MOs (A = 0) can be expanded in spherical waves as

p=0) =Y ar'rie.9). (6.1)
1=0

In the non-relativistic approximation matrix elements of ¥ and Vz‘p ‘T are proportional
to the sum over all electrons

X = }:X,- = % Za{,a{ . (6.2)

Contributions of different MOs to this factor are listed in table 5 and summation gives
{note that each MO is doubly occupied)

X =741 au, (6.3)

This procedure ignores the fact that in the vicinity of the Tl nucleus electrons are highly
relativistic. HS calculated a relativistic enhancement factor R to parameter X in two steps.
First they derived a relativistic analogue of (6.2). Then for each MO they solved numerically
the radial Dirac equation in the vicinity of the Tl nucleus for an energy equal to that of
the MO. The resultant radial Dirac wavefunction was normalized by matching the large
component with the non-relativistic radial function obtained by the spherical expansion of
the MO. This matching was made at the antinode at approximately 0.1 au from the Tl nucleus
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Table 5. Orbital contributions to the factor X for the TIF molecule and Xe atom. For TIF
relativistic enhancement factors R; obtained by the matching procedure of HS are given as well.
For Xe the orbital mixing within the subspace of doubly occupied orbitals is excluded.

TIF Xe
MO X, (aw) R: AO  Xi/E (aw)
20 2771 — 2 —
3¢ 2797 — p —
dg —4492 593 35 =06
5o 4596 631 3p -12
8 —6783 342 4s -36
Pa 698.4 341 4p -15

llo —784.4 315 55 3188
130 47872 314 Sp 30842
140 -30.3 323 — - —
160 —265.9 315 — -
17¢ 6310 i - —

where the molecular potential is still close to that of the atom and relativistic effects are
already small (Sandars and Beck 1965). For the interaction V¥ HS found
R=13.15. 6.4)

HS used the minimal basis set of the Slater-type orbitals. Later Coveney and Sandars
(1983) repeated calculations using a double-zeta basis set. For the equilibrium internuclear
distance they give

X =12945 an R=11 {6.5)
and the corresponding parameters of the spin—rotational Hamiltonian are:

WS =22x 10" MHz ¢! em™> ‘ (6.6)

W, T =37 x 107* MHz. (6.7)

Analysis of Coveney and Sandars showed a strong dependence of the results on
the internuclear distance and on Slater exponents £. They concluded that more reliable
calculations need to be done.

Let us discuss the accuracy of these calculations in more detail. If a non-relativistic
molecular calculation is made, there are two different problems to be solved, i.e. evaluation
of X and evaluation of R. The first of them requires extensive molecular calculations while
the second is actually an atomic problem. The last statement is based on two observations:

(i) The main contribution to X comes from the valence electrons (see below). Their
orbital energies are ~1 au and at the matching distances can be neglected in comparison
with the potential energy.

(ii) The relativistic factor depends on the potential in the vicinity of the heavy nucleus
where it is close to Z/r.

1t follows that the factor R only depends on the nuclear charge Z and can be calculated
in the same way as for atoms {see Khriplovich 1991). The relativistic analogue of (6.1) is
the expansion of the MO in four-component spherical waves:

hwy= 3 Cyllj o) (6.8)
1j=T21/2
. fii¥fe
|z,f,w>=(. L (69)
ig1; Y,
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where f and g are radial functions, lr:f o is the spherical spinor, !’ =2j — 1.

In the vicinity of the nucleus functions f and g can be found up to the normalization
constant from the simple radial Dirac equation with zero energy and potential Z/r. Solutions
of this equation are expressed in terms of Bessel functions:

( fis ) _k L( ¥ + ) oy, (6) — dx a1 (2) ) ©.10)
g ) WZ\r @Z Sy (x) '
where

82r ¥y =VUF1/2F -0’22 k=(-)Ej+1). (6.11)

Normalization coefficients a; are of the order of unity and with good accuracy are
independent of j. They are determined by matching with the solution of the non-relativistic
Schridinger equation in the cuter region.

It is well known that for j = % expression (6.10) diverges at the origin. This leads to
the infinite value for R. A standard trick is to evaluate all diverging expressions at r = ry
rather than at r = O (ry is the nuclear radius). The accuracy of this approximation is usually
about 10-20%.

Not all coefficients C; ; in (6.8) are independent. Indeed, for each ! # 0 a pair of
functions with j =1{ — é and j={+ % at large distances have to form the non-relativistic
function |{, m; = A, w). For example, for o MOs the following relations hold true:

Crspz = —v2Crip Caspp = —v3/2C23p2 eto. (6.12)

Using these relations one can easily check that for the operator V° the non-relativistic
expression wsxjf which leads to (6.2) must be substituted by v, , (1;’;1:,I . +21//pm) /3. Ttis easy
to calculate tlus expression by expanding Bessel functions in (6.10) 1n a power series. Now
one needs to single out the factor which turns to unity if @Z — 0. This is the relativistic
enhancement factor to be found. Its explicit form appears to be R = (Rip2 + 2R3/2)/3,
where
4(2Zry)rin=2
22y + 1)

612 + Dysja + 1) + @Z)n 2 + v3y2 — 2)(2Zry)NFrin—3
T2y + DI Qyz+ 1) )

For Z = 8] these equations give R = 5.2§.

The difference of the values of the factor R given by HS (6.4) and by Coveney and
Sandars (6.5) from that of Khriplovich suggests that non-relativistic orbitals obtained from
a molecular calculation have improper behaviour at small distances from the nucleus.
The matching procedure of HS tends to compensate for inaccuracy of the molecular
wavefunction. But one can expect that for the more flexible molecular basis sets it will give
values close to the atomic one. Note that the latter can easily be improved with the help of
the wavefunctions for the finite nucleus.

The accurate calculation of the factor X is a more complicated problem. One needs to
use extended basis sets to obtain a good wavefunction at the Tl nucleus. It is also necessary
to check the accuracy of the wavefunction in this region. Two tests seem to be important.
First is the value of the electric field at the nucleus. It must turn to zero in the Hartree—
Fock limit but can differ from zero for the finite basis sets. The second is the value of
the quadrupole constant go (4.13). Unfortunately, the T1 nucleus does not have a nuclear
quadrupole moment.

Ripp = (6.13)

Rip =

(6.14)

t In a similar way one can find that the enhancement factor for the operator VZP TisR=R p2+ ) 3="79.
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The role of the core electrons in the calculations of X is not quite clear. It is seen from
table 5 that there are large contributions of the core MOs as well as severe cancellations
between them. This can be explained by the mixing of AOs of s- and p-type within the
same shell. But as long as all of them are doubly occupied this mixing does not influence
the final result. The important mixing occurs only between the occupied and unoccupied
orbitals which is much smaller.

We examined this problem for the much simpler example of the Xe atom in the external
electric field. We used Hartree-Fock perturbation theory in the basis set of HF atomic
orbitals to calculate an atomic wavefunction in the external field £. Perturbation theory
was reformulated to exclude mixing of the occupied orbitals. We checked the electric field
at the nucleus which appeared to be less than 3% of &. Our results are listed in table 5.
The sum over electrons gives

X/& = —3410 au. (6.13)

This value has to be compared with the results of the more extended calculations
of Dzuba et al (1984) and Mirtensson-Pendrill (1985) who calculated the EDM of a Xe
atom induced by the interaction Vz‘p ‘T Dividing their results by the relativistic factor
R=R /22—“&%@ = 2.65 we obtain X = —2550 au and X = —3234 au, respectively, which
is in reasonable agreement with (6.15},

From this example one can see that the net contribution of the inner shells to the
screening of the external field and to the factor X is small. If it is true, in the molecular
calculations it is possible to use the frozen-core approximation. As long as the molecular
internal field is strong on the atomic scale it can be better to exclude the shell next to the
valence one out of the core.

The influence of the core polarization on the factor X can be studied in the calculation
of the CsF molecule where it must be more important. Indeed, the single valence electron
of Cs is strongly attracted by the fluorine and its contribution to the screening as well as to
the factor X and the constant go must be relatively small.

If an all-electron calculation is performed it is still possible to use the single relativistic
enhancement factor calculated for outer orbitals (neglecting the orbital energy in comparison
with the potential energy). At least it is important to use equal relativistic enhancement
factors for orbitals originating from one atomic shell to allow the compensation mentioned
above to take place.

There are preliminary results of the new calculation for the TIF molecule (Williams et
al 1994) with a much better basis set. The total energy of the molecule is approximately
20 Hartrees lower than in the calculation of Coveney and Sandars. There are also some
perspectives on the relativistic calculation of this molecule.

6.2. Paramagnetic molecules—semi-empirical approach

In this section we describe semi-empirical caleulations of BaF, YbF and HgF molecules.
All of them have the ground state 2%, ; and are candidates for the EDM experiments. The
method used here was developed by Kozlov (1985). It is based on the close connection
between matrix elements of the PNC interactions with matrix elements of the magnetic
hyperfine interaction. The hyperfine structure constants can be measured by means of the
electron-spin resonance (see table 3), thus making it possible to reproduce electron-spin
density in the vicinity of the nucleus.

The main features of all these polar molecules can be understood from the following
maodel. One of the outermost 6s-electrons of the metal atom moves to fluorine and closes its
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2p-shell. The M* ion remains with the unpaired electron on the orbit, strongly polarized by
the F~ ion along the molecular axis. This single unpaired electron is of primary importance
for cur considerations. Indeed, coupled electrons do not contribute 1o the hyperfine constants
as well as to the P-odd and P, T-odd constants of the spin-rotational Hamiltonian (4.15).

In the single-particle approximation the unpaired electron occupies MG with A = 0 and
Jew] = % At present we assume that A is a good quantum number in the sense of (6.12).
The accuracy of this assumption is discussed below.

In the vicinity of the nucleus of the heavy metal atom the wavefunction can be expanded
in spherical waves according to (6.8)(6.12). For small r only the first several terms of the
series (6.3) are important. In this region the molecular wavefunction is determined by the
products

o5 = Cp.1/260 op = Cripa oz = Ca3paz  etc (6.16)

whete coefficients a; are from (6.10).

Using equation (6.10) we can now express matrix elements of all operators which depend
mainly on the wavefunction of the unpaired electron in the vicinity of the heavy nucleus
in terms of few first constants ;. Such operators must be (i) singular at the origin and
(ii) depend on electron spin (a second feature is necessary to eliminate contributions of the
coupled electrons), .

The hyperfine tensorA has two independent parameters. It is convenient to use the
following combinations of Ay and A,:

A +2A, Ay~ AL
=—— — -

These parameters can be expressed in terms of the radial integrals for the hyperfine
interaction operator as follows (Kozlov 1985):

A Ag = (6.17)

=%Cth o+ %thu - 3—;’—ECE C_zht -+ 5C%h 0

+EClhyy ~ BRCC sk s+ $Chg s+ o (6.18)
Ag=—8Cih — lt,ﬁcn Cozhycz~ £C2 0.2
-4 Chys — %Czc—ﬂlz.us ~5%Ch 33+ (6.19)
oo
o
hpp = __23,; f (frgw + g fi) dr (6.20)
mp 3

where we used the single index k& from (6.11) instead of /, f in (6.8), g, is G-factor of
the nucleus and m, is the proton mass. For functions (6.10) these integrals are calculated
analytically:

gna  2sign(kkNaZlaap sin(m{y; — N+ k- 1)
mp 7(y; + vy + ) = D =y = (7 — 7))

Now with the help of experimental values far hyperfine constants from table 3 it is easy
to obtain system of equations for parameters o;. For the YbF molecule this system looks
as follows (Kozlov and Ezhov 1994):

higp = — (6.21)

3117007 — 133007 — 5007 + - - - = 7617

6.22
551007 + 3700 4 -+~ = 102. (622
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It is seen that contributions of the spherical waves rapidly decrease as the orbital anguiar
momentum increases. On this ground we can neglect contributions of the waves with [ > 2.
Then

ol =024 af =0.019. (6.23)

More detailed analysis shows that the error from neglecting the d-wave must be less
then 5% for o2 and even smaller for oZ.

To calculate matrix elements of the P, T-odd operators we have to fix the sign of the
product g50p. Using the ionic model of the molecule one can easily see that interference of
s- and p-waves has to be destructive on the inner side and constructive on the outer side of
the metal ion. If phases are fixed so that ¢; > 0 and the quantization axis is directed from
the metal atom to F, then oy0, < 0.

Above we used (6.12) to reduce the number of independent variables in the system
(6.22). These relations are valid for MOs with quantum number A = 0. The spin-orbit
interaction mixes MOs with the same « but different A. It also determines splittings of the
sublevels with w = A £ % of the state A. The main admixture to the ground state can be
expected from the first excited state TT (A = 1) with energy 18000 cm™! (see Herzberg
1957). Comparison of the spin—orbital splitting of the substates I1;;, and TI3, with that
for the 6p state of Yb* shows that the 8p-orbital contributes about 60% to the sz MO. The
contribution of the 6p-orbital to the ¢ MO can be estimated as 23% using {6.23) and the
semiclassical value for the parameter g; = 0.23. Then, spin—orbital mixing of these states is

(A=1,0|H,;A=0,0)
Ey - E
(69, A = 1, w]H,0l6p, A = 0, w)
18000 cm—!

£ =

= (0.6 x 0.23)1/2 ~ —0.03. (6.24)

An alternative way to calculate & was used by Kozlov (1985) for BaF and HgF
molecules. It can be readily shown that the spin—orbital mixing of E,,; and TT, states

influence the & tensor so that
GL—G =21 -3 =114} =0}. (6.25)

For the YbF molecule this method gives an even smaller value for &, but there is some
uncertainty caused by the unknown contribution of the d-wave to the matrix element {ME)
in (6.25). We conclude, that for the YbF molecule the accuracy of (6.12) is about 3% or
better.

Spin—orbital mixing for the HgF molecule can be more important. Ignoring contributions
of the waves [ = 2 to the ME (A = [[{ |k = 0} in (6.25} we can change (6.12} to account
for the spin—orbital mixing:

G — Gy

C = —/2C -
1372 V2C11p T

(6.26)
Using experimental data from table 3 it is easy to calculate the product o;q, for BaF
and HgF. The usage of (6.26) instead of (6.12) leads to the 3% correction to this product

for the HgF molecule.
With the help of (6.10) electronic matrix elements of the PNC operators are easily
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expressed in terms of the constants o;. For example, (A, w|V?|A, w) = W9d,w and

[= <3
d
W = SZC_,C, fg_,g,d—f_’rzdr
{
o

_ 160:223( 90 _ 20,04 +.. ) (6.27}
] 2
Np@yip =1 wp@rp-b

where y; is defined in (6.11). For YbF this equation gives W4 = 1740,0, — 150,04+ .
It is again seen that contributions of the waves with / > ] are strongly suppressed.

Other constants of the spin-rotational Hamiltonian are calculated in a similar way.
Numerical values are given in table 6.

Table 6. Results of the semi-empirical calculations for BaF, YbF and HgF molecules.

Molecule  a:0; wd whT Wy WM
(I0¥P Hz e lem™) (I0°Hz) (Hz) (10¥° Hz e~lem™D)
Baf® -0.050 -0.35 -11 210 —0.83
BaF® —0.057 —0.41 -13 240 —0.98
YbF ~0.067 —-1.5 —48 730 -2.1
HeF¢ -0.12 -47 —203 2700 —4.8

Experimental data for the hyperfine constants are taken from:
3 Knight er af (1971).

b Rizlewicz ez al {1982).

©Van Zee er al (1978),

K night et al {1981).

6.3. Paramagnetic molecules—ab initio calculations

The main difficulties in the calculation of PNC effects in paramagnetic diatomics are the same
as for the closed-shell diatomics: (i) a large number of the electrons and (ii} a necessity for
the correct description of the electron wavefunction at the heavy nucleus.

On the other hand here we are interested in the electron-spin-dependent PNC interactions,
For this reason the contribution of the core electrons is strongly suppressed and can be
ignored. This makes possible the use of the relativistic effective core potential (RECP)
approach (see reviews by Balasubramanian and Pitzer 1987 and Ermler et o/ 1988). Up
to now the only ab initiv calculations of the PNC effects in diatomic radicals PbF and HgF
were done within this approach (Dmitriev e af 1985, 1986, 1992, Kozlov et al 1987).

RECP helps to solve the first problem mentioned and to diminish the number of electrons
involved essentially in the numerical calculations. The second problem can be solved by
the procedure proposed in the works cited above. This procedure is incorporated as a last
step in the algorithm for the numerical calculations of the PNC effects in the open shell
diatomics. The total algorithm consists of five steps.

First step. atomic SCF calculation. Population analysis as well as the large value of the
dipole moment of both molecules show that the metal atom is positively charged, For this
reason atomic calculations were done for the M™ ions with the help of the Hartree—Fock—
Dirac program developed by Bratsev er al (1977).
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Second step: construction of the RECP. Chemical bonds are formed in the space region
where the valence electrons can be considered as non-relativistic even for heavy atoms.
Then it is natural to consider the inner shells of the relativistic electrons as a frozen core
and to introduce the RECP (Kahn 1984). In this approach the valence atomic orbitals ¢y;
are replaced by the pseudo-orbitals &P, which coincide with the true ones outside the core
region and are smoothed inside this region. Following Christiansen et af (1979} the large

components of the pseudo-orbitals are written as

ZC,-r’ r<ry

0= i (6.28)

ntj
v
fnu -

where f;; is the large component of the orbital ¢, and ry, is a matching radius Coefficients
C; are determined by matching the va]ue and the first three derivatives of Fj;; and f; at ry,
with the normalization condition for Fj;. The matching radius is minimized subject to the
condition that F}); can have only one antinode and two inflection points. Pseudo-orbitals
of this type are called shape-consistent (Kahn et al 1976).

For the nodeless pseudo-orbitals F;); the RECP can be defined as (Wadt and Hay 1985)

UREP(p) = UEF""(rHZ 3. Z( UREE ) — URET ) ILjm) Ljm] (6.29)

=0 j=t+l m==j

where the radial RECP USPF is obtained from the Schrédinger-like equation

1 1d  1kk+1) .
nif

where ¢, is the orbital energy, anj is the sum of the Coulomb and exchange operators,
k is defined in (6.11), {jm) is the angular Pauli spinor. The maximum value of { in the
expansion (6.29) denoted by L is usually chosen as L = [7:4*+1 where [;.%* is the maximum
I for the occupied orbitals. For PbF and HgF molecules IJio" = 3,

Third step: molecular sCF calculation.  For the non-relativistic molecufar SCF calculation
RECP should be averaged over the quantum number j:

UARECP _ 21:- 1 ([Uﬁfif}z +{+1) IRE[?Z) 6.31)

Molecular SCF calculations were made with this potential to obtain the two lower
molecular states 2% and 2F1. This calculation was made in the minimal basis set of atomic
(pseudo-)orbitals. It included 5d3/0, 5dss2, 6812, 6p1/2 and 6psy2 pseudo-orbitals for Hg or
Pb atom and Is, 2s and 2p orbitals for F atom. All radial functions for fluorine orbitals,
for metal pseudo-orbitals and for ARECP were approximated by the sets of Gaussians. After
that the MOLCAS package (Roos 1980) was used.

Fourth step: effective spin—orbit potential. In the frame of the RECP method the effective
spin—orbit potential can be introduced as follows (Balasubramanian and Pitzer 1987, Ermier



1958 M G Kozlov and L N Labzowsky

et al 1988):
P = RECP RECP~ ! e
UESO ('l") B Z(U“,__UZ(!') 4+ Uf.f+[/2(r)) (’j}—;{—:—l- Z |l, I+ ’12‘, m){l, [+ %| m|
=0 m==(+})
{-1;2
[41
“IT 2 sf,z—é,mw,z-é,m). (6.32)

m=—(l=1)

The total molecular Hamiltonian including ARECP and ESOP was diagonalized in
the subspace of X and 21 states, thus giving 2Xs, %Iy, and %M1y states (in this
approximation 2Ey, and %1y, states are mixed while the 2IT;, state is a pure state).

Fifth step: restoration of the molecular wavefunction in the core region.  The resultant LCAO
expansion for the unpaired electron has been used to calculate matrix elements of the PNC
interactions. For this purpose the pseudo-orbitals were substituted by the corresponding true
orbitals.

This procedure allows us to restore the wavefunction in the core region. An alternative
way is to follow the matching procedure of HS. The advantage of the latter method is that
one can use a much more flexible basis set of primitive Gaussians. However, the matching
radius of HS is smalier than that of the core and thus this matching procedure does not agree
with the RECP of the given type. This contradiction can be eliminated with the help of the
RECP for the pseudo-arbitals with nodes (Titov er al 1991, Mosiagin et al 1993, Tupitsin et
al 1994). In this case the core region is reduced by excluding more than one outer shells
from the core. Moreover, as far as RECP includes relativistic effects this matching can be
more accurate than for the purely non-relativistic molecular calculations.

Results of the calculations for PbF and HgF. The method described above was used for
diatomic radicals PbF and HgF with the ground states X, and 2ITj;;. The accuracy
of these calculations was checked by calculating the magnetic hyperfine tensor A and the
gyromagnetic tensor G. Several standard spectroscopic characteristics were calculated as

Table 7. Results of the ab initio calculations of the constants of the spin-rotational Hamiltonian
for the ground states of PbF and HgF molecules,

Constant  PbF HgF Units

B* 6840 6540 MHz

AE 10990 24150 MHz

A% —-8990 23310 MHz

Gy 0.040 1996 —

Gy —0.326 1.960 —

D —4.62 -4.15 Debye

w4 1.4 -4.8 10¥ Hze! cm™!
whT 55 -185  kHz

wf ~720 2500 Hz

Wb — -48 10 Hz e~! cm™%)

# These parameters are not sensitive fo the behaviour of the wavefunction in the core region and
were calculated in the basis set of the primitive Gaussians without restoration procedure,
bMagnetic dipole constants A, are given for spin 4 isotopes 27Pb and '**Hg while the magnetic
quadrupole constant WM is given for M Hg (/ = ).
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well. In the latter case there was no need to restore the wavefunction in the core region
and the basis set of the primitive Gaussians was used.

Results of these calculations for the constants of the spin—rotational Hamiltonian are
given in table 7. There is a good agreement with the experiment for the internuclear
distance for the PbF molecule. A comparison with the experiment for G — Gy (HgF)
and for A /2B (PbF) shows that there is some overestimation of the spin—orbital mixing.
The accuracy of the calculation of the hyperfine constants A and A; of the HgF molecule
is 7% and 14%, respectively. It was shown in the previous section that contribution of
the s function is dominant for the constant A while the p function dominates in A,. So,
the accuracy of the resulis for the PNC terms of the spin-rotational Hamiltonian should be
again about 20% or better. Within this accuracy there is agreement between ab initio and
semi-empirical calculations.

7. Conclusion

The aim of this review is to show that PNC experiments on diatomic molecules can give
very important information about fundamental P-odd and P, T-odd interactions. The main
advantage in comparison with atoms is the much larger enhancement factors. Let us
compare, for example, the sensitivity to the EDM of the electron in the thallium experiment
(Abdullah er a! 1990) with that in the molecular one. The enhancement factor for Tl is
k ~ 500. The external electric field is £, ~ 1 x 10° V em™!. So, in the thallium experiment
electron is subjected a field of k& ~ 5 x 107 V em™!, In the molecular experiment it is
sufficient to apply the field £ ~ 2 x 10* V em™! to obtain almost complete polarization.
Then, the effective electric field on the electron is simply equal to %Wd and table 6 gives
3% 10" V em~? for the YbF molecule and 1 x 10" V em™! for the HgF molecule.

In table 8 the best experimental upper limits for the constants of the P, T-odd interac-
tions as well as the P, T~odd moments of the electron and the nuclei are listed together with
the equivalent frequency shifts in the molecular experiments. This table shows what are the
modern requirements on the accuracy of the molecular experiments. But it should be kept
in mind that P, T~odd nuclear moments & and M can differ from one nucleus to another
and nuclear calculations are needed for the accurate comparison of the different results.

Another important question is the reliability of the molecular calculations. In the
previous section we showed that the accuracy of molecular calculations for the electron-spin-
dependent PNC interactions is about 20%. It is sufficient to obtain the upper bounds on the

Table 8. Best experimental upper bounds on the constants of the P, T-odd interactions and the
equivalent frequency shifis in the molecular experiments.

uivalent uency shift (Hz
Upper bound for Ea freq Y )

Constant Object the absolute value TIF HgF YbF
S8 199y 3% 1070 g em? 5x1005  — e
grTs 199y 2% 1078 Il —  —
ghTe 1991 1% 10°¢ 1x10~* 02 005
M 133cg 1x107¥eem?  — 05 007
d.c W05 5% 107T e em — 0.3 0.08

2 Jacobs et al (1993},
b Peck er al {1994).
‘Commins ef al (1994}
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fundamental constants of the P, T-odd interactions. It is also enough for the measurement
of the anapole moment. The situation with the nuclear-spin-dependent P, T-odd interactions
is not so favourable. Here reliable calculations are still to be done. But, as we tried to
prove, it is possible to do with the help of the existing molecular codes and the new results
may appear in the near future,
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