К вопросу о химической идентификации E112 (эка-ртути): Является ли E112 относительно *дотнерленим* элементом? Прецизионные расчеты соединений E112и Hg.

Анатолий В. Титов

 ПИЯФ РАН: Н.С.Мосягин, А.Н.Петров, Т.А.Исаев, А.В.Титов

 ГНЦ "Курчатовский институт": А.В. Зайцевский

 Центр Фотохимии РАН:
 Е.А. Рыкова

- 1. О химической идентификации E112.
- 2. Обзор расчетов соединений Е112.
- 3. Наши расчеты соединений Е112Н, Е112Н⁺, Е112₂ и Е112Аи.

Полуэмпирические оценки для свойств Е112

Основное состояние E112 и Hg – конфигурация с полностью заполненными оболочками $nd^{10}(n+1)s^2$ (E112: $6d^{10}7s^2$; Hg: $5d^{10}6s^2$; Rn: $6s^26p^6$).

В 1975 г. *К. Pitzer* предположил, что E112 обладает очень высокой летучестью и инертностью.

Atom	Transition	Promotion energy (HFD)
Hg	$5d^{10}6s^2 \rightarrow 5d^{10}6s^16p^1$	5.2 eV
E112	$6d^{10}7s^2 \rightarrow 6d^{10}7s^17p^1$	8.6 eV
Rn	$6s^26p^6 \rightarrow 6s^26p^57s^1$	9.2 eV

Была инициирована дискуссия по вопросу: на что похож E112 по химическим свойствам на благородный газ Rn или на Hg?

Первые неэмпирические расчеты

Eliav et al., 1995: релятивистские корреляционные (DCB/RCCSD) расчеты <u>атома</u> **E112** и его ионов: *Основное состояние катиона* $E112^{+} - 6d_{3/2}{}^{4}6d_{5/2}{}^{5}7s_{1/2}{}^{2}$, в то время как для катиона $Hg^{+} - 5d_{3/2}{}^{4}5d_{5/2}{}^{6}6s_{1/2}{}^{1}$.

Seth et al. 1997: корреляционные расчеты (CCSD(T), MRCI) <u>молекул</u> E112H⁺, E112F₂ и E112F₄ с использованием метода *псевдопотенциала* (RECP), параметры которого подобраны в рамках LS-связи.

Однако молекулы XeF₂, XeF₄ и XeF₆ *также существуют*(!), так что эти расчеты не отвечают на вопрос о химической инертности E112 (Hg- или Rn-подобного поведения).

Расчеты других групп

 Nakajima et al., 2000 г.:
 скалярно-релятивистские (Douglas-Kroll-3)

 корреляционные (CCSD(T)) расчеты
 E112H, E112H⁺ и E112H⁻.

 Они пренебрегли большим спин-орбитальным взаимодействием.

Nash, 2005 г.: корреляционные (RCCSD(T)) расчеты **E112H**⁺ и **E112**₂ с использованием <u>псевдопотенциала</u> (RECP).

Однако Hg₂, E112₂ и Xe₂ являются *ван-дер-ваальсовыми системами* с малой энергией диссоциации.

Расчеты методом <u>релятивистского функционала плотности</u> (RDFT): **E112X** (X = Au, Ag, Cu, Pd) [Pershina *et al.*, 2002], **E112Au** [Tudoran *et al.*, 2003] и **E112₂** [Anton *et al.*, 2005]. Но (!) в этих работах используется точечное ядро (ошибка ~ 0.2 эВ) и не учтено брейтовское взаимодействие (ошибка ~ 0.05 эВ).

Table 1. Transition Energies (TE) for E112 (in eV).

Ground state:	HFDB	RECP	RECP	GRECP
$6d_{2/2}^4 6d_{5/2}^6 7s_{1/2}^2$		Seth	Nash	(our)
<i>s a 3</i> /2 <i>s a 5</i> /2 <i>r s 1</i> /2		1997	1997	2003
Excitation	TE (eV)	Errors (eV):	TE(RECP)	- TE(HFDB)
$7s_{1/2} \rightarrow 7p_{1/2}$	5.75	-1.77	0.40	-0.002
$6d_{5/2} \rightarrow 7p_{1/2}$	<u>3.56</u>	-1.86	-0.46	0.04 ^a
$[\dots] 6d_{5/2}{}^{5} 7s_{1/2}{}^{2} 7p_{1/2}{}^{1}:$ $7p_{1/2}{}^{1} \rightarrow 7p_{3/2}{}^{1}$	2.96	1.60	0.31	-0.003

^aThis error can be removed by "self-consistent" GRECP correction

Обобщенный релятивистский эффективный потенциал остова (ОРЭПО). Особенности:

- Используются разные приближения для описания состояний <u>внутренних остовных, внешних остовных</u> и <u>валентных</u> электронов;
- ОРЭПО включает <u>радиально-локальный</u>, <u>сепарабельный</u> потенциалы и <u>псевдопотенциал Фудзинаги</u> (Huzinaga) как свои компоненты и как частные случаи. ОРЭПО также включает члены других типов: "самосогласованные" операторы и двухэлектронные "поправки на расщепление в термы" для экономичного описания d- и f-элементов;
- Квантово-электродинамические (*брейтовские* и др.) эффекты и произвольные модели ядра эффективно учитываются в ОРЭПО;
- Корреляции с теми внутренними оболочками (и их поляризация), которые явно исключены из расчетов с ОРЭПО, могут быть учтены с помощью <u>"корреляционных" вариантов ОРЭПО</u>.

Точность расчетов с ОРЭПО:

- Метод ОРЭПО дает возможность выполнять расчеты с <u>"химической точностью"</u> (1 ккал/моль ≈ 0.043 эВ ≈ 350 см⁻¹) для валентных энергий;
- Точность может быть <u>выше, чем точность приближения</u> замороженного остова (при учете членов, описывающих релаксацию исключенных из ОРЭПО расчета электронов);
- Результирующая точность расчетов определяется <u>ограничениями корреляционных методов</u>, а не погрешностями приближений, сделанных в рамках ОРЭПО;
- В молекулярных ОРЭПО-расчетах могут использоваться спин-орбитальные (а не спинорные как в ДКБ) базисы, тогда как внутренние остовные оболочки явно исключаются из расчета как <u>"замороженные" атомные спиноры</u>.

Наши расчеты

Корреляционные (RCCSD+HOCA, ...) расчеты **Е112Н** и **Е112Н**⁺ с использованием метода ОРЭПО:

Молекулы **RnH** и **XeH** <u>не наблюдались</u> в газовой фазе в основном состоянии, тогда как молекулы **HgH** <u>могут</u> <u>быть получены</u> посредством радиочастотного разряда в парах металла и водорода (см. [Dufayard:88]).

Неэмпирические (CCSD(T)) расчеты E112Au и $E112_2$.

Расчеты E112H, E112Au и E112₂ методом функционала плотности с учетом спин-орбиты (SO-DFT) и других релятивистских эффектов в рамках ОРЭПО.

Потенциальные кривые для HgH & E112H:

Table 4. Spectroscopic constants for HgAu and E112Au.							
Method	R _e (Å)	$w_e(cm^{-1})$	D _e (eV)				
The HgAu molecule							
VGRECP/39e-SO-DFT (becke98)	2.71	104	0.51				
RDFT (RLDA/RGGA) [Pershina:02]	2.67	100	0.50				
RDFT (RLDA) [Tudoran:03]	2.6		1.03				
RDFT (GGA) [Tudoran:03]			0.55				
The E112Au molecule							
VGRECP/39e-SO-DFT (becke98)	2.77	83	0.36				
RDFT (RLDA/RGGA) [Pershina:02]	2.73	74	0.27				
RDFT (RLDA) [Tudoran:03]	2.6		0.93				
RDFT (GGA) [Tudoran:03]			0.41				

Потенциальные кривые для НдАи & Е112Аи

Вклад спин-орбитального взаимодействия

- 1. <u>Учет зависящих от спина взаимодействий</u> (а не только *скалярно-релятивистских* вкладов) в расчетах соединений сверхтяжелых элементов <u>необходим</u> даже для Σ-состояний *с валентными s*-электронами (когда спин-орбита не дает вклада в ведущем порядке).
- 2. Наши неэмпирические ОРЭПО-расчеты для E112X и E112H⁺ могут быть использованы для калибровки других приближенных методов (ТФП, полуэмпирика ...) и для исследования валентных /остовных свойств более сложных систем (взаимодействие с поверхностью и др.).
- 3. Е112 не является более инертным, чем Нд в целом; его поведение существенно зависит от особенностей элементов, с которыми образуется химическая связь.