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Calculation of properties

» one-electron property operator:

A _ T
0= E Opqapaq
Pq

P expectation value in the state V:
(0) = (V|Ov)

P property via numerical differentiation:
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Density matrix

» one-particle density matrix of the N-electron system:

v, r') = N/\U(rl,rz,..,,rN)\U*(r{,rz,‘..,rN) dr,...dry
y(r,r') = Z Dpq 95 (r')q(r)
Pq
> matrix elements Dpq:

Dpq = <\U|a;aq|\ll>

» formula for expectation values:

(0) = / o(r)y(r,r)dr = Z DpgOpq

Pq
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Coupled cluster theory

Cluster operator

Single excitations:

“yactmusr”
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Double excitations:
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Coupled cluster theory
Energy and CC amplitude equations

» Exact wavefunction:
W) = e |o)

» Bloch equation:

HIW)=EW) = (He')c|®o) = Ecorr |o)

» Projection onto (®o| = expression for correlation energy:

Ecorr = <¢0|(HeT)C|¢O>

> Projection onto (97|, (¢3°| = amplitude equations (CCSD):

(®F|(HeT)c|Po) =0
(®°|(HeT)c|®o) =0
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CC energy functional

Problem:
CC theory isn't variational = Hellmann-Feynman theorem doesn’t work

dE

)= # W

how to avoid differentiation of t amplitudes?
Solution: Lagrange method

L = (Oo|(He )c|do) + > N (d1](He )| Po)
— ——— ; N—— ———

Ecorr amplitude eqn-s
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De-excitation operator A

Rewrite in a compact form:

L = (Po|(He )c|®o) + > A (®1|(He")c|do)
=

L = (®o|(L + A)(He )c|®o)

Within the CCSD model A = A1 + Aa:

o =+ —
- - it .
4 o M = Z/\a{ai 3} Zﬁa
i -k)‘ -H— ia
- +H-
|®7) [®0)
b + _
N ) W
) A== Z/\gb{afaaaTab} iyNa JYAD
i z ﬁ 4 ijab !
r 4o +H-
|®3°) |®o)

9/21



A-equations for CCSD

L = (®o|(He)c|Po) + Y A (i](He)c|®o)

» differentiation wrt A\; = we obtain amplitude equations:

(®/](He )c|®o) =0

> differentiation wrt t; = equations for A; (A-equations):

<¢0|(HeT)C + A(HeT)c - Ecorr‘¢l> =0

> getting rid of Ecor:

(®o|(He )c|®1)-+(Po| (A(He )c)e|®r)+ _ (®o|(HeT)c|®x) (®x|A|®1) =0

disconnected diagrams

» is linear in A, but the Jacobi method is more convenient to use
> number of floating-point operations: O(N°) for CCSD
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Expression for density matrix elements (CCSD)

» Differentiation of £ wrt the perturbation parameter A
. A dT _ q dA _
» Orbital relaxation is neglected = 9 =0, 53 =0

» DM matrix elements:

Dpg = (®o|(1+A) ({afaq}e”)c|®o)

g Qe A O (A
R A S

» CC density matrix is non-hermitian!
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The CCSD(T) model

Estimate of triple excitation amplitudes

- o

» algebraic expression for the T3 amplitudes:

e ti = P(k/ij)P(a/bc) Zt (be|ldk) —P(i/jk)P(c/ab) > ti (mcl|jk)

m

» energy denominators:
6325 =¢cite+ex—Ea—Ep—Ec
» permutation operators:
P(i/jk) =1— Pj — Pi
» O(N") floating-poing operations, N — number of spinors
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The CCSD(T) model

Perturbative energy correction

Ecespry = Eccsp + ET + Est + Ept

AE(T)

» 4th order contribution of T3 (using the energy formula
E = (do|(e” HeT)c|do)):

QOG- Q0 0~ e-sperss

uka bc

» T3 contributions to T1 = energy correction:

----- 1 ay* . abc

Jjkbc

» T3 contributions to To = energy correction:

--X
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A equations for CCSD(T)

L = Eccsp + ET + Est + Ept + Z)\/ (®/]|(HeT )| Do)
—_—
AE(T) !

Additional terms in CCSD A equations:

- AT
fj = ARD ARD AR,

S KRN - R AN - KA




Expression for CCSD(T) density matrix elements

L = Eccsp + ET + Est + Ept + Z A1 (®](HeT)c|®o)
—_—

AE(T) !

» contribution to diagonal “hole-hole” Dj;:

oo G

P contribution to diagonal “particle-particle” D,,:

o0 00T

P contribution to off-diagonal “particle-hole” D,;:

Ao
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EXP-T program package

open source project: qchem.pnpi.spb.ru/expt
Kramers-unrestricted relativistic coupled cluster theory
Fock-space MR-CC for open-shell problems

CCSD, CCSD(T), CCSDT-1,2,3, CCSDT

symmetry: D>, and subgroups, Doon, Coov

vV VvVvVvyVvVvyYyeswy

fast implementation of new models

v

analytic density matrix for single-reference CCSD and CCSD(T)
» CC natural orbitals
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qchem.pnpi.spb.ru/expt

Pilot application 1: contracted basis sets
Atomic natural orbitals (ANO)

P> many atomic states are single-reference
= CCSD, CCSD(T) work well

averaging of density matrices for several electronic states
diagonalization of DM = natural orbitals (spinors)

occupation number of ANO ~ its significance in the basis set

vVvyVvyy

effective and compact contracted basis sets

Example: Cs atom, averaging over six DMs:
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Pilot application 1: contracted basis sets

Basis for low-lying states of cesium

[em™] IP 6p P,

uncontracted 31466

deviation from uncontracted basis:

ANO, scal-rel CCSD -80
ANO, rel CCSD -62
ANO, rel CCSD(T) -75
exptl 31406

6p P§/2

11787

5d 3?/2
14572
-29

-13

-1

14499

5d 5/2

14670

-30
-14

14597
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Pilot application 2: shielding constant on Re in ReO,

» Shielding tensor can be formally defined as:

Re O*E

%= E)B,- a,LLRe,_,'

P> Perturbation 1: interaction with an external
magnetic field

HB=%B-[(r—Ro)><a]

» Perturbation 2: magnetic dipole hyperfine
interaction
[(r = Rre) X ]
Hie = AT PReJ 2 2
hf = MRe Ir — Reel?
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Pilot application 2: shielding constant on Re in ReO,

» Operators Hg, Hys are T-odd

» ‘“paramagnetic”’ contribution to o

» CCSD model, 710 spinors

» numerical 2nd derivative (finite-diff method):
o = 3678 ppm

> analytic (W|Hg|V) + numerical 1st derivative
o = 3675 ppm

» finite-difference method: max 2nd derivatives

» analytic DM + numerical differentiation:
3rd derivatives of energy = hyperpolarizabilities, ...
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Further plans

» code optimization

» analytic density matrices for CCSDT
» analytic DMs for FS-RCC in non-trivial sectors

> basis sets for generalized relativistic pseudopotentials (GRPP)

» calculation of different properties defined as 2nd and 3rd derivatives of
energy
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