Петербургский институт ядерной физики им. Б. П. Константинова – НИЦ "Курчатовский институт" Московский Государственный университет им. М.В. Ломоносова, Химический факультет

Релятивистский метод связанных кластеров для модельных пространств с несколькими квазичастицами: на пути к эффективной реализации

А.В.Олейниченко А.В.Зайцевский С.В.Козлов Э.Элиав

alexvoleynichenko (at) gmail.com http://www.qchem.pnpi.spb.ru

ПИЯФ, 17 апреля 2019

В прошлый раз...

31 мая 2017

Fock Space Coupled Cluster Code (FSCC):

Проект программного комплекса для высокоточных расчетов электронной структуры и спектров молекул соединений тяжелых элементов

- ✓ объединение и систематизация имеющихся кодов (GRECP, CC, ...)
- ✓ создание единообразного интерфейса к ним

11 апреля 2018

FSCC: программный комплекс для высокоточных расчетов электронной структуры и спектров молекул соединений тяжелых элементов: Текущие возможности и перспективы

- ✓ разработка и тестирование эффективных алгоритмов
- ✓ расчет моментов переходов в рамках FS-MRCC

Сегодня

- ✓ переходим к высоким секторам пространства Фока: теория
- ✓ совершенно новая программа EXP-Т

Метод связанных кластеров в пространстве Фока (краткое напоминание)

SR-CC:

$$|\psi_0\rangle = e^T |\Phi_0\rangle$$

FS-MRCC:

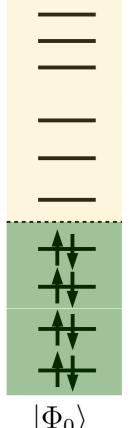
$$|\psi_x\rangle = \{e^T\} \sum_I C_I |\Phi_I\rangle$$

(немного усложненный) **волновой оператор**

модельный вектор линейная комбинация детерминантов

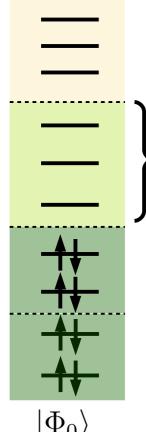
- ✓ размерно-согласованный метод
- ✓ идеально подходит для задач атомной и молекулярной спектроскопии
- структура модельного пространства полностью определяет круг доступных электронных состояний (область применимости)

$$|\psi_x\rangle = \{e^T\} \sum_I C_I |\Phi_I\rangle$$



 $|\Psi_{0}\rangle$ вакуумный детерминант (обычно ХФ)

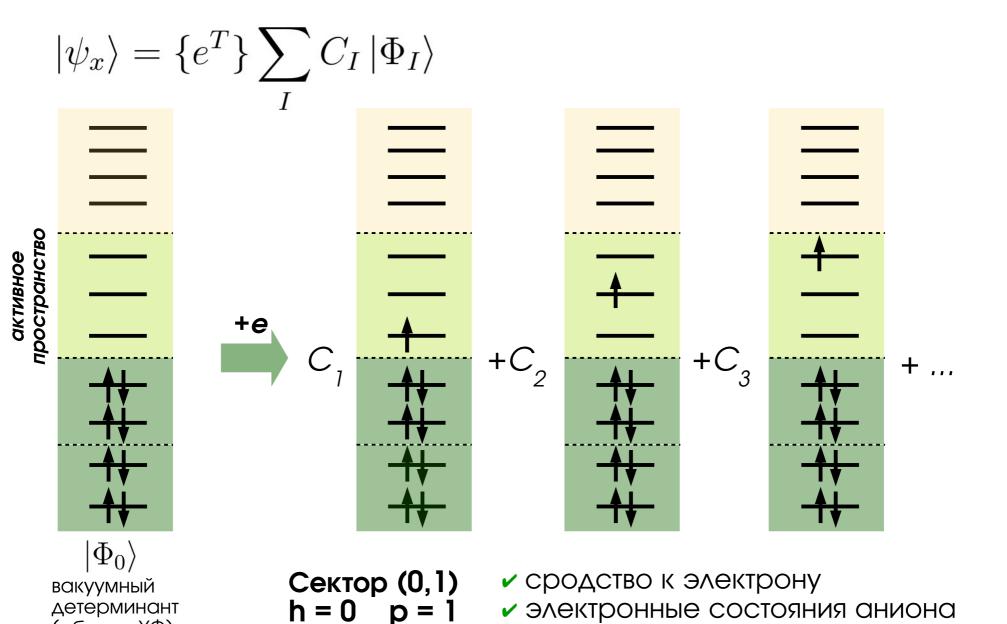
$$|\psi_x\rangle = \{e^T\} \sum_I C_I |\Phi_I\rangle$$



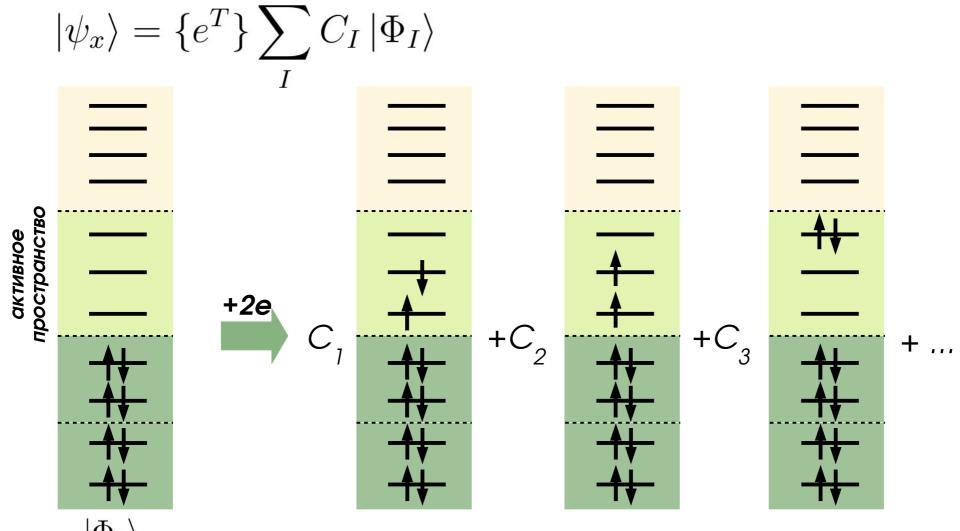
активное пространство спин-орбиталей/спиноров

вакуумный детерминант (обычно ХФ)

(обычно ХФ)



Sr+, Ba+, Ra+ (Sahoo et al, 2009); 8
RbAr (Medvedev et al, 2018); CaF (Isaev et al)



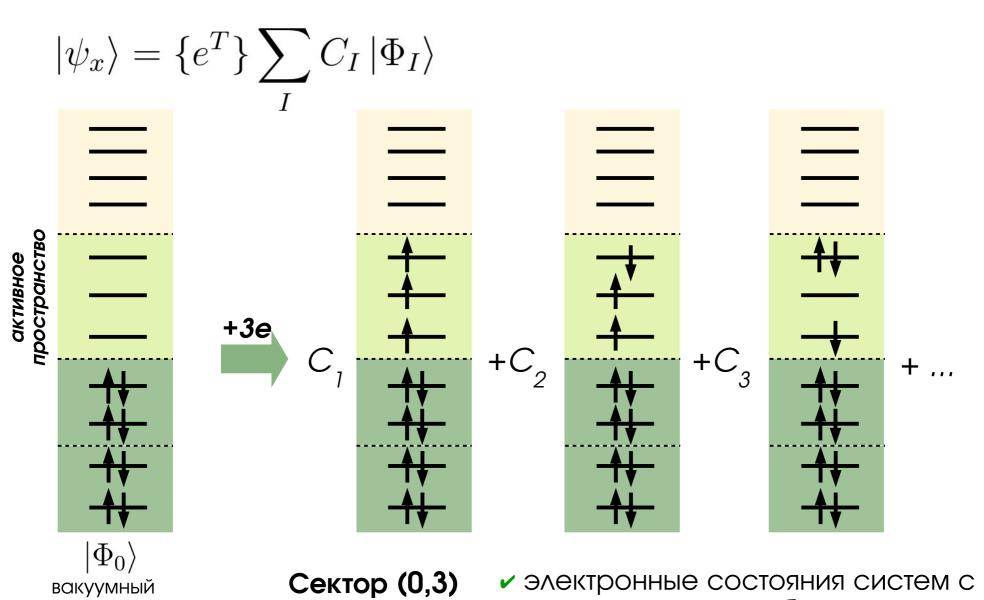
 $|\Psi_{0}\rangle$ вакуумный детерминант (обычно ХФ)

Сектор (0,2)h = 0 p = 2 ✓ гибкое описание систем с двумя открытыми оболочками

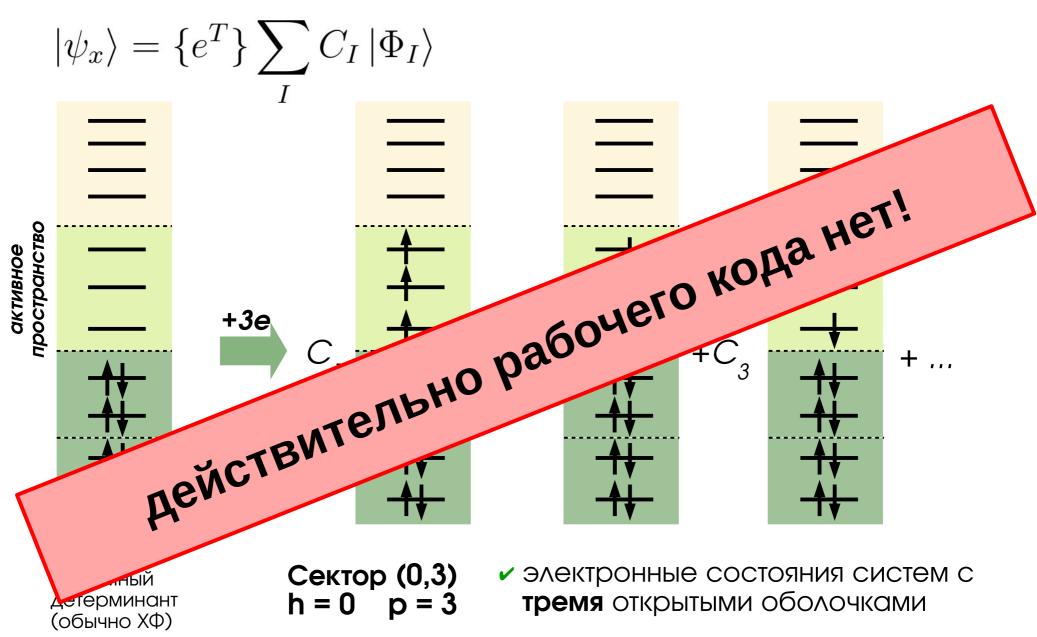
атомы **Hg, E112** (Eliav et al, 1995) димеры **RbCs, Cs₂** (Zaitsevskii et al, 2017)

h = 0 p = 3

детерминант (обычно ХФ)



тремя открытыми оболочками



Модельное пространство: высокие сектора

"Высокие сектора" - более двух квазичастиц над вакуумом Ферми

- ✓ Реализация FSCC для "высоких секторов" сделает доступными ранее крайне трудные для прецизионного моделирования системы (несколько открытых оболочек)
- (0,3) димеры щелочной щелочноземельный металл (LiCa, RbSr, ...)
- (0,3) димеры щелочной металл иттербий (YbRb, YbCs, ...)
- **(0,3)** соединения U(III), Np(IV)
- **(0,4)** соединения Pu(IV)
- (1,p) электронные состояния с *d* или *f*-дыркой (характерно для Au, Yb)
- + атомные спектры всех p-элементов и большей части d- и f-элементов
- + первые предсказания в химии суперактинидов (Е121 и далее)

Как сконструировать FSCC для высоких секторов?

Уравнения метода FSCC (напоминание)

Кластерный оператор T в секторе (h,p):

$$T = \sum_{h,p} \sum_{n} T_n^{(h,p)} = T^{(0,0)} + T^{(0,1)} + T^{(1,0)} + T^{(1,1)} \dots$$
$$T^{(h,p)} = T_1^{(h,p)} + T_2^{(h,p)} + T_3^{(h,p)} + \dots$$

CCSD

CCSDT

все $\mathcal{T}^{(h,p)}$ определены относительно общего вакуумного состояния

Эффективный гамильтониан:

матрица M – число активных СПИНОРОВ

матрица размерности Мh+p,
$$H_{eff}^{(h,p)} = P^{(h,p)}H\{e^T\}P^{(h,p)}$$

проектор на модельное пространство

ДИСТОНСКИЗСЦИЯ

FSCC в высоких секторах: модель CCSD

В секторе (h,p) с h+p = 3 в рамках модели CCSD ($T = T_1 + T_2$) нельзя построить отвечающий сектору кластерный оператор $T^{(h,p)}$

- у эффективный гамильтониан строится из молекулярных интегралов и амплитуд из более низких секторов (h+p < 3) неитеративно:

$$H_{eff}^{(h,p)}(CCSD) = P^{(h,p)}H\{e^{T_1+T_2}\}P^{(h,p)}$$

✓ максимум 6 квазичастиц над вакуумом (открытых оболочек)

! ожидается понижение точности в ряду секторов:

$$(0,0) \sim (0,1) \sim (0,2) > (0,3) > (0,4) > (0,5) > (0,6)$$

У ДЛЯ ВЫСОКОЙ ТОЧНОСТИ ПОТРЕБУЮТСЯ БОЛЬШИЕ МОДЕЛЬНЫЕ ПРОСТРАНСТВА

FSCC в высоких секторах: модель CCSD+T(3)

Идея: попробуем оценить амплитуды операторов T_3 исходя из аргументов многочастичной теории возмущений

 T_3 и их вклад $\Delta H_{
m eff}(T_3)$ оцениваются только один раз в конце расчета – испольуются "сошедшиеся" амплитуды T_1 и T_2

$$H_{eff} = H_{eff}(CCSD) + \Delta H_{eff}(T_3) \qquad [T_3, H_0] \approx VT_2$$

- ✓ очень дешево!
- ightharpoonup учитываются только появляющиеся в третьем порядке ТВ вклады в $H_{
 m eff}$
- ✓ могут быть построены (оценены) амплитуды T_3 в секторах (0,3) и (3,0)
- ✓ модель аналогична обычному методу CCSD(T)
- Х НО ВСОГДО ПРОДСКОЗУЕМОЯ ТОЧНОСТЬ (для сектора (1,0) см. Bernholdt, Bartlett, 1999)

FSCC в высоких секторах: модели CCSDT-n

Теперь амплитуды T_3 оцениваются на каждом шаге решения амплитудных уравнений и вносят вклад в уравнения на амплитуды T_1 и T_2

CCSDT-1:

$$[T_3, H_0] \approx VT_2$$

повторяется до достижения сходимости

$$T_1, T_2 \leftarrow f(V, T_1, T_2, T_3)$$

- ✓ итеративное решение уравнений только в низких секторах
- ✓ вычислительная сложность ниже, чем у полного CCSDT
- ✓ реализовать не намного сложнее, чем CCSD+T(3)

CCSDT-2, CCSDT-3: в нетривиальных секторах не дешевле CCSDT

FSCC в высоких секторах: модели CCSDT

В модели CCSDT амплитуды T_3 определены для секторов с h+p=3

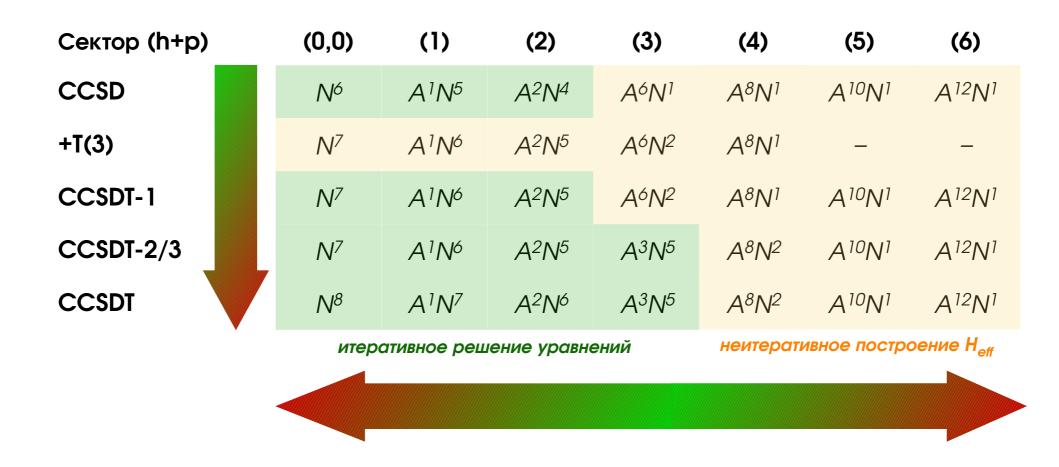
✓ аналогично FS-CCSD:

```
h+p ≤3 – решение амплитудных уравнений
```

- h+p>3 неитеративное построение $H_{\rm eff}$
- ✓ ОЧЕНЬ ВЫСОКОЯ ТОЧНОСТЬ
- ∠ до 10 квазичастиц над вакуумом (открытых оболочек)

- ! сложная программная реализация
- **х** очень высокая вычислительная сложность (от $O(N^8)$)
 - → могут помочь **только параллельные вычисления**

Сравнение моделей: асимптотическая сложность*



А – число валентных (активных) спиноров

N – размерность базиса одночастичных функций

Как правило, $A \ll N$

¹⁸

Сравнение моделей

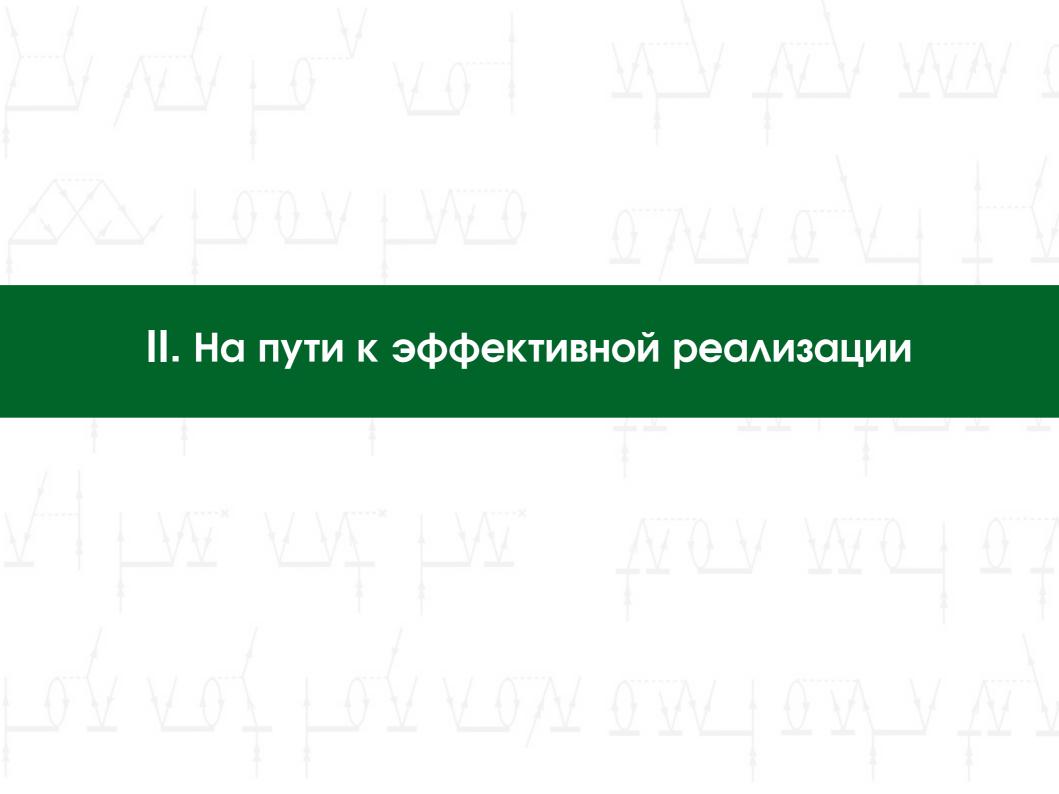
ожидаемая точность

CCSD CCSD+T(3) CCSDT-1 CCSDT-2/3 CCSDT ...

асимптотическая сложность

сложность программной реализации

Как построить эффективную программу?



Новая программа ЕХР-Т

Требования к новой программе:

- ho должна работать с любыми гамильтонианами (NR, DC(B), 2cECP, ...) и точечными группами D_{2h} + подгруппы + $C_{_{\infty\,V}}$ + $D_{_{\infty\,h}}$
- ✓ CCSD: минимум 500 спиноров
- ✓ CCSDT: минимум 200 спиноров
- ✓ высокие сектора хотя бы (0,3)
- ✓ модели до CCSDT включительно
- ✓ удобная сборка (cmake)

Новая программа ЕХР-Т

Модели:

- ✓ CCSD
- ∠ CCSD+T(3)
- ✓ CCSDT-1,2,3
- **∠** CCSDT

Интегралы:

- ✓ DIRAC*, OneProp
- и симметрии

Параллелизация:

- ✓ OpenMP
- ∠ CUDA**

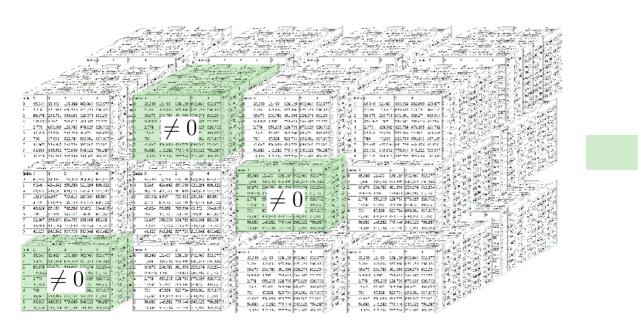
+ сдвиги знаменателей (Zaitsevskii et al, PRA 2017)

Новая программа ЕХР-Т: алгоритмы

Ключ к эффективной реализации – использование симметрии

$$\Gamma_A \notin \Gamma_{\psi_i}^* \otimes \Gamma_{\psi_j}^* \otimes \ldots \otimes \Gamma_{\hat{O}} \otimes \Gamma_{\psi_a} \otimes \Gamma_{\psi_b} \otimes \ldots$$

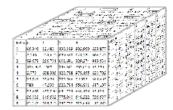
$$\langle \psi_i \psi_j ... | \hat{O} | \psi_a \psi_b ... \rangle = 0$$



многомерный массив интегралов или амплитуд

(т.н. схема direct product decomposition, DPD)





ненулевые симм. блоки

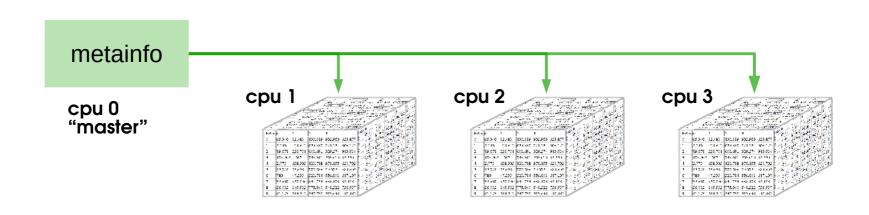
23

Новая программа ЕХР-Т: алгоритмы

многомерный массив интегралов и их индексов

совокупность ненулевых блоков интегралов без индексов

- ✓ симм. блоки можно разбить на блоки еще меньшего размера в зависимости от объема доступной оперативной памяти
- ✓ блоки легко хранить на разных узлах кластера (MPI)
 - → возможно решение очень больших задач



Новая программа ЕХР-Т: алгоритмы

Транспозиция многомерных массивов

- \checkmark асимптотическая сложность: $O(N^4)$ (для модели CCSD)
- ✓ ПОЛНАЯ НЕЗАВИСИМОСТЬ ПО ДАННЫМ → ОЧЕНЬ ЛЕГКО ПАРАЛЛЕЛИЗОВАТЬ

Вычисление сверток диаграмм

- ✓ вычисление свертки = матричное умножение
- ✓ использована библиотека LAPACK (OpenBLAS, ...)
- ✓ нулевые симметрийные блоки игнорируются
- ✓ огромный ресурс параллелизма!

ЕХР-Т: реальная задача

КСs / С_{∞ v} 452 спинора

Сборка компиляторами Intel 19 + MKL v 2019.0.3, Intel(R) Xeon E5-2680v4, 1 поток Intel® C++ Compiler 19.0; Intel(R) Math Kernel Library 19.0 Update 3 for Linux

время, сек	EXP-T v1.3.3
сортировка интегралов	16080
время на итерацию (0,0)	348
время на итерацию (0,1)	405

Но в ЕХР-Т:

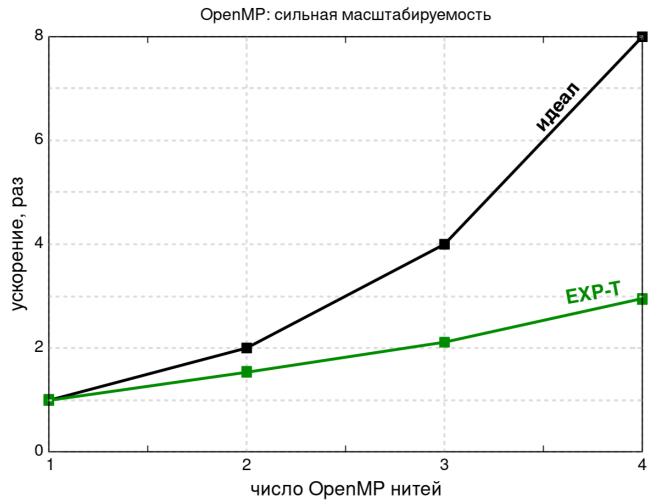
- вся арифметика комплексная
- не учитывается перестановочная симметрия (4x)
- ▶ не реализован DIIS и т.д.
- > есть OpenMP параллелизация!

EXP-T + OpenMP

$\mathsf{KRb} \ / \ C_{\scriptscriptstyle \infty \, v}$ 362 спинора

Сборка компиляторами Intel 18 + MKL v 2018.0.1 *, Intel(R) Core(TM) i9-7900X

Время на итерацию в секторе (0,2)



EXP-T + NVIDIA CUDA

Атом Rb 182 спинора

Сборка компиляторами Intel 19 + Intel MKL 2019.0.3*, AMD FX(TM)-8320 (8), 1 поток GPU: NVIDIA(R) GeForce(R) GTX TITAN Black

время, сек симметрия	EXP-T, seq	EXP-T/CUDA
$C \infty V$	334	1189
Cs	3087	2300
C1	9726	4825

Дальнейшие планы

- ✓ учет перестановочной симметрии амплитуд: CCSD 4x, CCSDT 36x
- ✓ модели CCSD+T(3), CCSDT-n, CCSDT во всех секторах
- ✓ сектора с тремя квазичастицами (код легко получить из SR-CCSDT)
- ✓ дальнейшие оптимизации OpenMP/CUDA параллелизма: асинхронные чтение с диска / выгрузка на GPU
- ✓ регистрация ПО и сайт