Петербургский институт ядерной физики им. Б. П. Константинова – НИЦ "Курчатовский институт" Московский Государственный университет им. М.В. Ломоносова, Химический факультет

Релятивистский метод связанных кластеров для модельных пространств с несколькими квазичастицами: на пути к эффективной реализации

А.В.Олейниченко А.В.Зайцевский С.В.Козлов Э.Элиав

alexvoleynichenko (at) gmail.com http://www.qchem.pnpi.spb.ru

ПИЯФ, 17 апреля 2019

31 мая 2017 Fock Space Coupled Cluster Code (FSCC): Проект программного комплекса для высокоточных расчетов электронной структуры и спектров молекул соединений тяжелых элементов

✓ объединение и систематизация имеющихся кодов (GRECP, CC, …)

создание единообразного интерфейса к ним

11 апреля 2018 FSCC: программный комплекс для высокоточных расчетов электронной структуры и спектров молекул соединений тяжелых элементов: Текущие возможности и перспективы

разработка и тестирование эффективных алгоритмов

✓ расчет моментов переходов в рамках FS-MRCC

переходим к высоким секторам пространства Фока: теория

совершенно новая программа – EXP-T

I. FSCC в высоких секторах: теория

Метод связанных кластеров в пространстве Фока (краткое напоминание)

SR-CC:

$$\left|\psi_{0}\right\rangle = e^{T} \left|\Phi_{0}\right\rangle$$

FS-MRCC:

$$|\psi_x\rangle = \{e^T\} \sum_I C_I |\Phi_I\rangle$$

(немного усложненный) волновой оператор модельный вектор линейная комбинация детерминантов

размерно-согласованный метод

идеально подходит для задач атомной и молекулярной спектроскопии

х структура модельного пространства полностью определяет круг доступных электронных состояний (область применимости)

Модельное пространство в методе FSCC

 $|\psi_x\rangle = \{e^T\}\sum_I C_I |\Phi_I\rangle$ ____ $|\Phi_0\rangle$ вакуумный детерминант (обычно ХФ)

Модельное пространство в методе FSCC

Sr+, Ba+, Ra+ (Sahoo et al, 2009); 8 **RbAr** (Medvedev et al, 2018); **CaF** (Isaev et al)

вакуумный детерминант (обычно ХФ)

- Сектор (0,2) h = 0 p = 2
- гибкое описание систем с двумя
 открытыми оболочками

атомы **Hg, E112** (Eliav et al, 1995) димеры **RbCs, Cs**₂ (Zaitsevskii et al, 2017)

Модельное пространство в методе FSCC

"Высокие сектора" – более двух квазичастиц над вакуумом Ферми

- Реализация FSCC для "высоких секторов" сделает доступными ранее крайне трудные для прецизионного моделирования системы (несколько открытых оболочек)
- (0,3) димеры щелочной щелочноземельный металл (LiCa, RbSr, ...)
- (0,3) димеры щелочной металл иттербий (YbRb, YbCs, ...)
- **(0,3)** соединения U(III), Np(IV)
- **(0,4)** соединения Pu(IV)
- (1,p) электронные состояния с *d*-или *f*-дыркой (характерно для Au, Yb)
- + атомные спектры всех *p*-элементов и большей части *d* и *f*-элементов
- + первые предсказания в химии суперактинидов (Е121 и далее)

Как сконструировать FSCC для высоких секторов?

Кластерный оператор **Т** в секторе (h,p):

все Т^(h,p) определены относительно общего вакуумного состояния

Эффективный гамильтониан:

энергии нескольких электронных состояний

FSCC в высоких секторах: модель CCSD

В секторе (h,p) с h+p = 3 в рамках модели CCSD ($T = T_1 + T_2$) нельзя построить отвечающий сектору кластерный оператор $T^{(h,p)}$

- ✓ отсутствует $T(h,p) \rightarrow$ не нужно решать амплитудные уравнения (быстро!)
- эффективный гамильтониан строится из молекулярных интегралов и амплитуд из более низких секторов (h+p < 3) неитеративно:

$$H_{eff}^{(h,p)}(CCSD) = P^{(h,p)}H\{e^{T_1+T_2}\}P^{(h,p)}$$

максимум 6 квазичастиц над вакуумом (открытых оболочек)

! ожидается понижение точности в ряду секторов:

 $(0,0) \sim (0,1) \sim (0,2) > (0,3) > (0,4) > (0,5) > (0,6)$

14

! для высокой точности потребуются **большие модельные пространства**

A. Haque, U. Kaldor. Chem. Phys. Lett., V. 120, P. 261 (1985); S. R. Hughes, U. Kaldor. Chem. Phys. Lett., V. 194, P. 99 (1992)

FSCC в высоких секторах: модель CCSD+T(3)

Идея: попробуем оценить амплитуды операторов *Т*₃ исходя из аргументов многочастичной теории возмущений

 T_3 и их вклад $\Delta H_{eff}(T_3)$ оцениваются только один раз в конце расчета – испольуются "сошедшиеся" амплитуды T_1 и T_2

$$H_{eff} = H_{eff}(CCSD) + \Delta H_{eff}(T_3)$$
 $[T_3, H_0] \approx VT_2$

• очень дешево!

- ✓ учитываются только появляющиеся в третьем порядке ТВ вклады в H_{eff}
- ✓ могут быть построены (оценены) амплитуды Т₃ в секторах (0,3) и (3,0)
- ✓ модель аналогична обычному методу CCSD(T)
- Х НЕ ВСЕГДА ПРЕДСКАЗУЕМАЯ ТОЧНОСТЬ (для сектора (1,0) см. Bernholdt, Bartlett, 1999

FSCC в высоких секторах: модели CCSDT-n

Теперь амплитуды T₃ оцениваются на каждом шаге решения амплитудных уравнений и вносят вклад в уравнения на амплитуды T₁ и T₂

CCSDT-1:

$$[T_3, H_0] \approx VT_2$$
повторяется до достижения сходимости $T_1, T_2 \leftarrow f(V, T_1, T_2, T_3)$

итеративное решение уравнений только в низких секторах

- ✓ вычислительная сложность ниже, чем у полного CCSDT
- ✓ реализовать не намного сложнее, чем CCSD+T(3)

CCSDT-2, CCSDT-3: в нетривиальных секторах не дешевле CCSDT

FSCC в высоких секторах: модели CCSDT

В модели CCSDT амплитуды T_3 определены для секторов с h+p = 3

✔ аналогично FS-CCSD:

h+p ≤ 3 – решение амплитудных уравнений

h+p>3 – неитеративное построение H_{eff}

ОЧЕНЬ ВЫСОКАЯ ТОЧНОСТЬ

и до 10 квазичастиц над вакуумом (открытых оболочек)

! сложная программная реализация

× очень высокая вычислительная сложность (от $O(N^8)$)

→ МОГУТ ПОМОЧЬ ТОЛЬКО ПАРАЛЛЕЛЬНЫЕ ВЫЧИСЛЕНИЯ

S.R. Hughes, U. Kaldor. Chem. Phys. Lett., V. 204, P. 339 (1993).

Сравнение моделей: асимптотическая сложность*

Сектор (h+p)	(0,0)	(1)	(2)	(3)	(4)	(5)	(6)
CCSD	N ⁶	$A^{1}N^{5}$	A^2N^4	A ⁶ N ¹	A^8N^1	$A^{10}N^{1}$	$A^{12}N^{1}$
+T(3)	N^7	$A^{1}N^{6}$	A^2N^5	A ⁶ N ²	A^8N^1	_	_
CCSDT-1	N ⁷	A ¹ N ⁶	A^2N^5	A ⁶ N ²	A^8N^1	A ¹⁰ N ¹	$A^{12}N^{1}$
CCSDT-2/3	N ⁷	A ¹ N ⁶	A^2N^5	A ³ N ⁵	A ⁸ N ²	A ¹⁰ N ¹	$A^{12}N^{1}$
CCSDT	N ⁸	$A^{7}N^{7}$	A ² N ⁶	A ³ N ⁵	A ⁸ N ²	A ¹⁰ N ¹	$A^{12}N^{1}$
·	итеративное решение уравнений				неитерат	ивное постро	оение Н _{eff}

А – число валентных (активных) спиноров

N – размерность базиса одночастичных функций

Как правило, *A* << *N*

Как построить эффективную программу?

II. На пути к эффективной реализации

Требования к новой программе:

- должна работать с любыми гамильтонианами (NR, DC(B), 2сЕСР, ...)
 и точечными группами D_{2h} + подгруппы + $C_{_{\infty}v}$ + $D_{_{\infty}h}$
- ✓ CCSD: минимум 500 спиноров
- ✓ CCSDT: минимум 200 спиноров
- высокие сектора хотя бы (0,3)
- ✓ модели до CCSDT включительно
- ✓ удобная сборка (cmake)
- параллелизм

Новая программа ЕХР-Т

Модели:

CCSD

CCSD+T(3)

CCSDT-1,2,3

✓ CCSDT

Интегралы:

- DIRAC*, OneProp
- любые гамильтонианы и симметрии

Параллелизация:

OpenMP

CUDA**

+ сдвиги знаменателей (Zaitsevskii et al, PRA 2017)

** NVIDIA ® CUDA TM; J. Nickolls et al. ACM Queue, 6 (2), pp. 40-53 (2008); www.nvidia.com

Сектора (h,p): реализованные планируемые

L. Visscher et al. DIRAC, a relativistic ab initio electronic structure program, Release DIRAC17 (2017) (http://diracprogram.org)

Новая программа ЕХР-Т: алгоритмы

Ключ к эффективной реализации – использование симметрии

 $\Gamma_A \notin \Gamma_{\psi_i}^* \otimes \Gamma_{\psi_i}^* \otimes \ldots \otimes \Gamma_{\hat{O}} \otimes \Gamma_{\psi_a} \otimes \Gamma_{\psi_b} \otimes \ldots$

 $\langle \psi_i \psi_j \dots | \hat{O} | \psi_a \psi_b \dots \rangle = 0$

그는 것 같은 것 같
·····································
9 53.0 111 2419 616 50.1 (1.1.9 14.0 210 1.1.9 14.0 50.1 (1.1.9 14.0 14.0 14.0 14.0 14.0 14.0 14.0 14.0
The state when notes that when the state of the second state bases of the second state of the
s soon means more same same same the sound the same transformer same transformer same transformer same same transformer same same transformer s
- and the set of the s
2466 2 3 4 Markellines - 2 4 4 Markellines and an and a set in the set of
- Note The Contraction of the C
1 53-8 10-42 5020 0.24 88.00 0.24 88.02 100 0.24 88
4. 10 10 14 14 14 14 14 14 14 14 14 14 14 14 14
5 ALLS ALMAS STORE ALMAS C. ALLS ALMAS STORE ALMAS
5 25.4 13.43 13.04 25.04 25.04 14.5 (1) 14.1 (1) 14.
1 10.01 [10.07 [10.07] [10.07
- 2 1X -/- 1257 520,121 - 16.7 (1) + 2.7 1 - 52.215 128 1X 128
1 D. L. M. M. Market and M. M Market and M. Market and

многомерный массив интегралов или амплитуд

(т.н. схема direct product decomposition, DPD)

J. F. Stanton et al, J. Chem. Phys. 94, 4334 (1991); A. Shee. PhD thesis (2016)

многомерный массив интегралов и их индексов

совокупность ненулевых блоков интегралов без индексов

- симм. блоки можно разбить на блоки еще меньшего размера в зависимости от объема доступной оперативной памяти
- ✓ блоки легко хранить на разных узлах кластера (MPI)
 → возможно решение очень больших задач

24

Транспозиция многомерных массивов

✓ асимптотическая сложность: О(N⁴) (для модели CCSD)

✓ ПОЛНАЯ НЕЗАВИСИМОСТЬ ПО ДАННЫМ → ОЧЕНЬ ЛЕГКО ПАРАЛЛЕЛИЗОВАТЬ

Вычисление сверток диаграмм

- ✓ вычисление свертки = матричное умножение
- ✓ использована библиотека LAPACK (OpenBLAS, ...)
- ✔ нулевые симметрийные блоки игнорируются
- огромный ресурс параллелизма!

ЕХР-Т: реальная задача

KCs / C_{∞ v} 452 спинора

Сборка компиляторами Intel 19 + MKL v 2019.0.3, Intel(R) Xeon E5-2680v4, 1 поток

Intel® C++ Compiler 19.0; Intel(R) Math Kernel Library 19.0 Update 3 for Linux

время, сек	EXP-T v1.3.3
сортировка интегралов	16080
время на итерацию (0,0)	348
время на итерацию (0,1)	405

Hо в EXP-T:

- ▶ вся арифметика комплексная
- > не учитывается перестановочная симметрия (4x)
- ≻ не реализован DIIS и т.д.
- > есть OpenMP параллелизация!

EXP-T + OpenMP

КRb / С_{∞ v} 362 спинора

Сборка компиляторами Intel 18 + MKL v 2018.0.1 *, Intel(R) Core(TM) i9-7900X

EXP-T + NVIDIA CUDA

Атом Rb 182 спинора

Сборка компиляторами Intel 19 + Intel MKL 2019.0.3*, AMD FX(TM)-8320 (8), 1 поток GPU: NVIDIA(R) GeForce(R) GTX TITAN Black

время, сек		
симметрия	EXP-T, seq	EXP-T/CUDA
$C \sim V$	334	1189
Cs	3087	2300
C1	9726	4825

- ✓ учет перестановочной симметрии амплитуд: CCSD 4x, CCSDT 36x
- ✓ модели CCSD+T(3), CCSDT-n, CCSDT во всех секторах
- ✓ сектора с тремя квазичастицами (код легко получить из SR-CCSDT)
- дальнейшие оптимизации OpenMP/CUDA параллелизма: асинхронные чтение с диска / выгрузка на GPU
- регистрация ПО и сайт