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Accurate evaluation of the P,T -odd Faraday effect (rotation of the polarization plane of the light propagating
through a medium in the presence of an external electric field) is presented. The magnitude of this rotation is
directly proportional to the optical path length. A novel idea is to observe the P,T -odd Faraday effect using
intracavity absorption spectroscopy (ICAS) experiments. The modern ICAS experiments allow one to observe
the rotation of the light polarization plane (natural or P-odd) with the optical path length up to a hundred
kilometers. This can be done mainly due to the work off-line in the resonance absorption experiments. For the
Faraday rotation (ordinary or P,T -odd) the maximum of the effect coincides with the maximum of absorption
which usually prevents the work off-line and employment of the large optical path length. However, we propose
to use the second rotation maximum that exists for the Faraday effect and would also allow for work off-line.
The calculations are performed for the heavy metal atoms Cs, Tl, Pb, and Ra where the P,T -odd effects are
most pronounced. The results of the calculations demonstrate that with the large optical path length the ICAS
experiments will be able to fix the possible P,T -odd effects at a level comparable with other very advanced
modern experiments.
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I. INTRODUCTION

The existence of the T -noninvariant (time-noninvariant)
interactions in nature is one of the most important fundamental
problems which has to be solved by modern physics. The
CP violation (C - charge conjugation, P - space inversion)
discovered in [1] in exotic reactions with K mesons means,
according to the CPT theorem, that such interactions in
principle exist. However, the search for more universal T -
violating interactions has been continued from 1950 up to now
without success. The existence of the electric dipole moment
(EDM) for any particle (not truly neutral, i.e., not coinciding
with itself after charge conjugation), i.e., for electron, nucleon,
charged boson, etc., would mean both P and T violation.
The same concerns any closed system of such particles: atom,
molecule, nucleus. The first suggestion for the search for the
EDM was made in [2] for neutrons in 1950 and for electrons in
atoms in 1958 [3]. Later it was found that in heavy atoms the
electron EDM can be strongly enhanced compared to the EDM
of free electrons [4,5]. Even stronger enhancement for the
nuclear EDM in heavy diatomic molecules was predicted in [6],
where molecules with closed electron shells were considered.
In [7,8] it was found that very strong enhancement (up to
1 billion times) can arise in heavy diatomic molecules with
open electron shells for P-odd effects due to the existence
of the �-doubling effect, which is absent for closed-shell
molecules. In [9] the same enhancement in diatomic molecules
was predicted for the electron EDM and in [10] for the P,T -
odd interaction between the electron and the nucleus. In [10]
it was also demonstrated that the P,T -odd electron-nucleus
interaction effect cannot be distinguished from the electron
EDM effect in any experiment with any particular atom or

molecule. According to [11] this can be done in the series
of experiments with highly charged ions due to the different
dependence of the two effects on the nuclear charge Z. The
most restrictive bounds for the electron EDM were established
in experiments with Tl atoms (de < 1.6×10−27 e cm) [12],
YbF molecules (de < 1.05×10−27 e cm) [13], ThO molecules
(de < 0.87×10−28 e cm) [14], and HfF+ molecular ions (de <

1.3×10−28 e cm) [15]. For extraction of de values from the
experimental data the theoretical calculations of the enhance-
ment coefficient are necessary. These calculations become
especially sophisticated for molecules (see, e.g., [16–18]).

Concerning the theoretical predictions for the value de

within the standard model (SM), the situation remains rather
uncertain. It was early understood that the CP-violating effects
within the SM can arise only via the phase factor in the
Cabibbo-Kobayashi-Maskawa (CKM) matrix. In particular,
the electron EDM can arise if the three-loop vertex is intro-
duced, including one quark loop which provides the CKM
phase [19]. In [19] the loop integrals were calculated numeri-
cally with the Glashow-Iliopoulos-Maiani (GIM) mechanism
taken into account. The value obtained in [19] for the electron
EDM was de ≈ 10−38 e cm. However, later in [20] it was
demonstrated that the total result at the three-loop level should
be exactly zero due to cancellations between different terms.
In [20] it was suggested that with additional gluon exchange
(i.e., already at the four-loop level) the result will become
nonzero. In [21] a particular mechanism of the P,T -odd
electron-nucleus interaction via two-photon exchange with
one CP-violating vertex on the electron line was suggested.
The estimates for this mechanism, which the authors called
“benchmark,” gave the value d

eqv,2γ
e ≈ 10−38 e cm for the

“equivalent” electron EDM. This “equivalent” EDM can be
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defined as an electron EDM that provides the same linear Stark
shift in an atomic system as a given P,T -odd electron-nucleus
interaction in the same external electric field. In the same
paper the “ordinary” electron EDM effect was estimated as
de ≈ 10−44 e cm. This estimate was given exclusively on the
basis of GIM, without numerical calculations. The contribution
of the gluon exchange was expressed via the factor αs/4π ≈
1/10, where αs is the strong interaction constant. From the
other side, one can suppose that the cancellation found in [20]
does not change the values of the separate terms evaluated in
[19]. Then multiplying the value 10−38 e cm [19] by this factor
we would obtain de ≈ 10−39 e cm. Recently in [22] another
mechanism of the P,T -odd electron-nucleus interaction in
atomic systems was suggested, namely, an exchange by the
Higgs boson between electron and nucleus with CP-violating
vertex on the electron line. This effect, unlike the electron EDM
contribution, does not vanish in the three-loop approximation.
Actually, the P,T -odd electron-nucleus interaction in atomic
systems was first introduced as an exchange by heavy neutral
scalar particle [10]. The estimate for this effect correlates
with the estimate for de and therefore ranges from d

eqv
e ≈

10−40 e cm to d
eqv
e ≈ 10−45 e cm.

The P,T -odd Faraday effect consists of rotation of the
polarization plane for the light propagating through a medium
in the presence of an external electric field oriented along
the light propagation direction. This effect is fully similar to
the ordinary Faraday effect which takes place in an external
magnetic field. Unlike the ordinary Faraday effect, the P,T -
odd Faraday effect occurs only by violation of P- and T -
reversal symmetries. The existence of such an effect was first
predicted in [23], also mentioned in [9], and later discussed
in [24]. If the frequency of propagating light is adjusted to an
atomic (molecular) resonance the rotation angle for the light
polarization plane is inversely proportional to the resonance
linewidth �, both in the ordinary andP,T -odd Faraday effects.
The idea in [24] was to employ nonlinear optical effects to
reduce the � value and consequently enhance the optical
rotation angle. Experiments of this kind have been carried out
since 2001 [25] (see also [26]). In these experiments a gas
vapor cell with atomic Cs vapor was employed. However, as
far as we know, the results have not yet been reported. In the
present paper we revisit the P,T -odd Faraday effect in view of
significant progress in the intracavity absorption spectroscopy
(ICAS) made during the last few decades [27–29]. We suggest
to observe the P,T -odd Faraday rotation off-resonance using
a second Faraday rotation maximum existing both for the
ordinary and P,T -odd Faraday effects. This would allow one
to employ very large optical path lengths pertinent in the recent
ICAS experiments and greatly enhance the P,T -odd Faraday
rotation angle. Preliminary estimates on the subject were given
recently in [30]. Here we present accurate calculations and a
detailed analysis of the possible ICAS-type experiment.

Our paper is organized as follows. In Sec. II we describe
how the P,T -odd Faraday effect arises in atomic systems in
the presence of the external electric field. We start from the
expression for the optical rotation angle caused by arbitrary
birefringence, describe how the birefringence arises in terms
of quantum electrodynamics (i.e., how the light-scattering
amplitude is connected with the refractive index), and discuss
the linear Stark effect, which is the origin of the birefringence

generating the P,T -odd Faraday effect. In Sec. III we discuss
in detail the theoretical grounds for the possible experiment:
the magnitude of the optical rotation angle, absorption in an
atomic vapor, and the existence of the second maximum for the
Faraday rotation angle as a function of the detuning. In Sec. IV
we briefly describe the powerful numerical methods that were
used for evaluation of the linear Stark effect in heavy metal
atoms and in particular, for the evaluation of the electron EDM
enhancement coefficients. In Sec. V the numerical results are
given for Cs, Tl, Pb, and Ra atoms. Discussion of the results
and conclusions are given in Sec. VI.

II. LINEAR STARK SHIFT IN ATOMIC SYSTEMS AS
AN ORIGIN OF THE P,T -ODD FARADAY EFFECT

A. Faraday rotation angle and the refractive index

The rotation angle ψ for the polarization plane of the light
propagating through the optically active medium with any type
of birefringence (natural or P-odd optical activity, ordinary or
P,T -odd Faraday effect) is defined by the relation (see, for
example, [31])

ψ = π
l

λ
Re(n+ − n−), (1)

where l is the optical path length, λ is the wavelength, and n+(−)

are the refractive indices for the right (left) circularly polarized
light. In general, the refractive index for any resonant process in
an atomic system is connected with the dynamic polarizability
of this system α(ω):

n(ω) ≈ 1 + 2πρα(ω). (2)

Here ρ is the atomic number density. The polarizability has
the same dimension as the volume, so the second term in the
right-hand side of Eq. (2) is dimensionless. The formula (2) is
valid when this second term is small compared to unity.

B. QED theory of the resonance dynamic polarizability
of an atomic system

Quantum electrodynamical (QED) theory of the resonant
processes in atomic systems can be found, for example, in
[32]. In this section we consider a resonant process as a photon
scattering on a heavy neutral atom with one valence electron
in its ground state ns1/2. The frequency of incident photon is
adjusted for the resonant excitation of the staten′p1/2 so that the
transition will be of E1 type. For such transitions the Faraday
rotation effect (ordinary or P,T -odd) will be the largest. This
process is described by the Feynman graph, Fig. 1. For our
purposes it is convenient to consider only the elastic photon
scattering.

An expression for the transition amplitude, corresponding
to Fig. 1, is as follows [32]:

AE1
ns1/2(n′p1/2) = e2〈ns1/2|αAki ,ei

E1 (r)eiki r |n′p1/2〉

× 〈n′p1/2|αAkf ,ef ∗
E1 (r)e−ikf r |ns1/2〉

En′p1/2 − Ens1/2 − ω
, (3)

where ki , ei and kf , ef are the wave vectors and polariza-
tions for the initial (absorbed) and final (emitted) photons,
respectively; ω is the photon frequency. In the case of elastic
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FIG. 1. The elastic resonant scattering of a photon on the ground
ns1/2 atomic state. The solid lines denote an atomic electron, and the
wavy lines denote the absorbed and emitted photons. The time axis
is supposed to be directed from left to right.

scattering, ω = |ki | = |kf |. Dirac matrices are denoted as α,
and Ak,e

E1 (r) is the E1 photon wave function in the coordinate
space. Equation (3) is written in relativistic units (r.u.): h̄ =
c = me = 1, where h̄ is the Planck constant, c is the speed of
the light, and me is the electron mass.

To introduce the line profile for the process depicted in Fig. 1
we have to sum up the infinite sequence of the lowest-order
electron self-energy insertions into the internal electron line in
Fig. 1 [32]. This leads to the arrival of the n′p1/2 level width
�n′p1/2 in the energy denominator in Eq. (3):

AE1
ns1/2(n′p1/2) = e2〈ns1/2|αAki ,ei

E1 (r)eiki r |n′p1/2〉

× 〈n′p1/2|αAkf ,ef ∗
E1 (r)e−ikf r |ns1/2〉

En′p1/2 − Ens1/2 − ω − i
2�n′p1/2

. (4)

When describing the photon interaction with atomic electrons
it is more convenient to characterize the photons with the set
of quantum numbers ωjlm, where ω is the frequency, and jm

are the angular momentum and its projection. The parity of
the photon is determined by the value of l: the wave function
of the magnetic-type photons (M) correspond to l = j and
the wave functions of the electric-type photons are the linear
combinations of the states with l = j ± 1. Then the parity of
the magnetic-type photon is

P = (−1)j+1 (5)

and the parity of the electric-type photon is

P = (−1)j . (6)

In this section we consider the polarizabilities, connected with
the resonance scattering of electric (namely, dipole electric E1)
photons. The polarizabilities connected with the absorption
and emission of magnetic dipole (M1) photons were consid-
ered in connection with the P-odd activity in atoms [33,34].

The explicit expressions forA(E)
ωjm(r) photon wave functions

are [35]

A(E)
ωjm(r) =

√
ω

2π

{√
j

2j + 1
gj+1(ωr)Y j,j+1,m(n)

−
√

j + 1

2j + 1
gj−1(ωr)Y j,j−1,m(n)

}
(7)

where

gl(ωr) = (2π )3/2il
1√
ωr

Jl+1/2(ωr). (8)

Jl is the Bessel function, and n ≡ r/r and Y j lm are the vector
spherical functions.

With the normalization adopted for the photon wave func-
tion in Eq. (7) (remembering that in r.u. the variable ωr is
dimensionless) we find that the matrix elements in Eq. (4) will
have the dimension of length, and the amplitude AE1

1s1/2(2p1/2) will
have the dimensionality of the volume, as it is necessary for
the polarizability. In the nonrelativistic limit ω ≈ me(αZeff)2,
r ≈ 1

meαZeff
(α is the fine-structure constant, Zeff is the screened

charge of the nucleus, as it is seen by the valence electron), and
ωr ≈ αZeff 	 1. Then, expanding Eq. (7) in the power series
in ωr and keeping only the largest terms, we obtain from Eq. (4)
an expression for the resonant polarizability corresponding to
the process depicted in Fig. 1:

αmimf (ω) = e2 〈ns1/2|(−1)mi r−mi |n′p1/2〉〈n′p1/2|rmf |ns1/2〉
En′p1/2 − Ens1/2 − ω − i

2�n′p1/2

,

(9)

where rm are the spherical components of the radius vector r . In
Eq. (9) averaging is assumed over the spin components of the
initial ns1/2 states and summation over the spin components
of the final ns1/2 states. Expression (9) can be easily gener-
alized for an arbitrary atomic valence electron configuration.
Therefore, in practical calculations we employ Eq. (9), keeping
relativistic expressions for one-electron wave functions and
energies. Equation (9) provides an expression for the second-
rank tensor of polarizability. The standard expression for the
refractive index in the case of an isotropic medium (vapor) is
connected with the scalar polarizability α(ω) as in Eq. (2). A
scalar part of the tensor Eq. (9) is obtained with mi = mf = m:

α(ω) = 1

3
αmm(ω) = e2

3

〈ns1/2|r|n′p1/2〉〈n′p1/2|r|ns1/2〉
En′p1/2 − Ens1/2 − ω − i

2�n′p1/2

.

(10)

C. Linear Stark shift caused by the P,T -odd
effects in atomic systems

In this section we demonstrate how the birefringence arises
in atomic systems due to the P,T -odd effects. As an example,
we consider again an atom in the ground ns1/2 state excited
by resonance photon scattering to the n′p1/2 state and located
in an external electric field. The electric field employed for
the observation of the P,T -odd Faraday effect in the case of
atoms should be the maximum achievable in the laboratory,
i.e., about 105 V/cm [12]. An electric field that begins to
destroy the atomic structure is of the order 109 V/cm [36].
Then the influence of the electric field can be considered
as a perturbation in all cases except the situation when the
levels of the opposite parity are too close to each other, as in
hydrogen atoms. We denote the one-electron wave functions
and one-electron energies as ψnl and Enl , respectively. Then
the refractive index in the case of resonant photon scattering
in an external electric field according to Eq. (10) will look like

n(ω) = 1 + 2π

3
ρe2

∑
m

〈ns1/2|rm|n′p1/2〉〈n′p1/2|rm|ns1/2〉
En′p1/2 − Ens1/2 − ω − i

2�n′p1/2

,

(11)
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FIG. 2. Scheme of the linear Stark splitting of the levels ñ′p1/2

and ñs1/2, where the sign ˜ denotes the levels corrected by electric
field.

where �n′p1/2 is the level width modified by an external electric
field. In an external electric field both energy levels En′p1/2

and Ens1/2 are split into two components due to the P,T -odd
effects, as it is shown in Fig. 2.

In the case of absorption spectroscopy experiments (ICAS)
we have to consider the absorption part of the process, Fig. 1,

ignoring the behavior of the emitted photons. Then, according
to Fig. 2 the absorption resonance spectral line is split in two
lines with frequencies ω(+) and ω(−). It is assumed that the
observer looks along the direction of the light propagation
and opposite to this direction. Then ω(+) corresponds to the
absorption of the right circularly polarized photons and ω(−)

corresponds to the absorption of the left circularly polarized
photons. The values ω(±) are

ω(+) = ω0 + 〈n′p1/2,+1/2|S|n′p1/2,+1/2〉
+ 〈ns1/2,−1/2|S|ns1/2,−1/2〉, (12)

ω(−) = ω0 + 〈n′p1/2,−1/2|S|n′p1/2,−1/2〉
+ 〈ns1/2,+1/2|S|ns1/2,+1/2〉, (13)

where

ω0 = En′p1/2 − Ens1/2 , (14)

and 〈n′l′1/2,m′
s
|S|nl1/2,ms

〉 with m′
s ,ms = ±1/2 are the linear

Stark matrix elements for different linear Stark sublevels. The
expressions for the Stark matrix elements are different for the
different P,T -odd effects. In the case of the linear Stark effect
produced by the electron EDM, the Stark matrix element looks
like [5]

〈
nl1/2,ms

∣∣S∣∣nl1/2,ms

〉 = −de

〈
nl1/2,ms

∣∣(γ0 − 1)E�
∣∣nl1/2,ms

〉 + deeE
∑

n′′l′′j,mj

{〈
nl1/2,ms

∣∣r∣∣n′′l′′j,mj

〉〈
n′′l′′j,mj

∣∣(γ0 − 1)E c�
∣∣nl1/2,ms

〉
En′′l′′j − Enl1/2

+
〈
nl1/2,ms

∣∣(γ0 − 1)E c�
∣∣n′′l′′j,mj

〉〈
n′′l′′j,mj

∣∣r∣∣nl1/2,ms

〉
En′′l′′j − Enl1/2

}
. (15)

Here de is the absolute value of the electron EDM, γ0,� are
Dirac matrices, E is the strength of an external electric field
and E c is the strength of the Coulomb field of the nucleus
and other electrons, r is the electron radius vector, and e is the
electron charge. The summation in Eq. (15) runs over the entire
spectrum in an atomic system. If necessary, Eq. (15) can be
extended to any more advanced description of the system. The
first term in the right-hand side of Eq. (15) is negligibly small
[31] and can be omitted. The presence of the factor (γ0 − 1) in
the matrix elements in Eq. (15) retains in these matrix elements
only the lower components of the Dirac wave functions, i.e., the
pure relativistic (magnetic) contribution. This is a consequence
of the Schiff theorem which forbids the electron EDM effect
for systems with only electrostatic forces acting between the
particles [37]. Then the linear Stark matrix element can be
expressed in the following way:〈

nl1/2,ms

∣∣S∣∣nl1/2,ms

〉 = RddeE . (16)

Equations (15) and (16) define the enhancement coefficient Rd

of the electron EDM in an atom. Note also that according to
[38] within the Dirac-Coulomb Hamiltonian one can use an
alternative expression for the P,T -odd interaction:

V eEDM = de

2i

eh̄
cγ 0γ 5 p2, (17)

where p is the momentum operator for an electron. The
advantage of this form of the interaction is that it is one electron.

In a similar way the linear Stark matrix element for the
case of theP,T -odd electron-nucleus interaction in an external
electric field can be derived [11]:〈

nl1/2,ms

∣∣S∣∣nl1/2,ms

〉
=

∑
n′′l′′j,mj

{〈
nl1/2,ms

∣∣r|n′′l′′j,mj

〉〈
n′′l′′j,mj

∣∣VP,T
∣∣nl1/2,ms

〉
En′′l′′j − Enl1/2

+
〈
nl1/2,ms

∣∣VP,T
∣∣nl1/2,ms

〉〈
n′′l′′j,mj

∣∣r∣∣nl1/2,ms

〉
En′′l′′j − Enl1/2

}
. (18)

Here VP,T is the operator of the effective P,T -odd electron-
nucleus interaction [10,11]

VP,T = QP,T CSi
GF√

2
γ0γ5ρ(r), (19)

where CS is the electron-nucleon coupling coefficient, GF

is the Fermi-coupling constant, and QP,T is the “P,T -odd
charge of the nucleus.” In both models of the P,T -odd
electron-nucleus interaction [21,22] mentioned in the Intro-
duction, QP,T = A, where A is the atomic number. ρ(r) is
the normalized nuclear density. Then the linear Stark matrix

062512-4



P,T -ODD FARADAY ROTATION IN … PHYSICAL REVIEW A 97, 062512 (2018)

element can be expressed in the following way:

〈nl1/2,ms
|S|nl1/2,ms

〉 = CSRSE . (20)

Equations (18) and (20) define the constant RS . Comparison
of Eqs. (16) and (20) interprets the EDM of an atom in terms
of the CS constant and vice versa.

III. P,T -ODD FARADAY ROTATION ANGLE

A. P,T -odd Faraday rotation line shape

From Eqs. (1), (2), and (11) an expression follows for the
P,T -odd Faraday rotation angle in the absorption experiment:

ψ(ω)= 2π2

3

l

λ
ρe2

∑
m

〈ns1/2|rm|n′p1/2〉〈n′p1/2|rm|ns1/2〉

×
{

ω(+) − ω

(ω(+) − ω)2 + 1
4�2

n′p1/2

− ω(−) − ω

(ω(−) − ω)2 + 1
4�2

n′p1/2

}
.

(21)

When discussing the resonant P,T -odd Faraday effect an
important question about the spectral line shape for this effect
should be considered. The spectral line shape for the resonant
P-odd optical rotation effect (as well as for the natural optical
activity effect) is antisymmetric with respect to the resonant
frequency point, while the absorption line shape is symmetric
with respect to this point and drops down fast towards the wings
of the line. This allows one to work off resonance, where the
absorption is small, and to use a large optical path length, as
it was suggested in Ref. [27]. The situation with the P,T -odd
Faraday effect as well as with the ordinary Faraday effect is
different. The spectral line shape in this case is symmetric with
respect to the position of the resonance frequency exactly as
the absorption line shape. This causes the problem of avoiding
absorption when observing theP,T -odd Faraday effect. Below
we examine this problem in more detail.

For any kind of birefringence (caused by the natural optical
activity, the P-odd optical activity, the ordinary Faraday
effect, or the P,T -odd Faraday effect) the rotation angle ψ

is proportional to Re(n+ − n−) [see Eq. (1)]. In case of the
P-odd optical rotation this difference is defined by Re[n+(ω) −
n−(ω)] = 4P[Ren(ω) − 1], whereP is the degree of the parity
nonconservation. Then the line shape is antisymmetric with
respect to the resonant frequency ω0. In the case of a Faraday
effect (ordinary or P,T -odd) we can expand n±(ω) in terms
of the external magnetic or electric fields,

Re
(
n(+) − n(−)

) = d

dω
Re(n(ω))〈μeH〉 (22)

for the ordinary Faraday effect, and

Re(n(+) − n(−)) = d

dω
Re(n(ω))〈deE〉 (23)

for the P,T -odd Faraday effect. In Eqs. (22) and (23), μe and
de are the magnetic and electric dipole moments of an electron,
H and E are the magnetic and electric field strengths, and
〈μeH〉 and 〈deE〉 denote the average values for the Zeeman
and linear Stark shifts, respectively. The smallness of theP,T -
odd Faraday effect is defined by the smallness of de compared
to μe. In the Gauss system of the electromagnetic units the

dipole moments μe and de are of the same dimensionality (as
well as magnetic and electric fields). In units of e cm the Bohr
magneton μ0 = μe equals

μe = 1.68×10−11 e cm. (24)

The largest prediction for de in SM (see Introduction) is

de ≈ 10−38 e cm. (25)

From Eqs. (22) and (23) it follows that line shapes for the
Faraday effect are symmetric with respect to the value ω0.

For further discussion we follow the derivations in [31],
where a similar problem was considered for the P-odd optical
rotation. In general, n(ω) is a complex function. Its real
(dispersive) part describes the dependence of theP-odd optical
rotation angle (as well as the natural optical activity) on the
light frequency in the vicinity of the resonance. The imaginary
(absorptive) part of n(ω) defines the absorption coefficient (ab-
sorption length). In the real situation for the light propagating
through an atomic vapor with collisional broadening taken
into account the function n(ω) is defined as the convolution
of the Lorentz profile with Maxwell distribution of atomic
velocities (Voigt profile). For simplicity we neglect the natural
linewidth compared to the Doppler width. This corresponds
to the standard real situation. Then with the parametrization
adopted in [31] Re n(ω) and hence the behavior of the rotation
angle for P-odd optical activity is proportional to

Re n(ω) ≈ Im F(u,v) ≡ g(u,v), (26)

and the absorptive part is proportional to

Im n(ω) ≈ Re F(u,v) ≡ f (u,v), (27)

where

F(u,v) = √
πe−(u+iv)2{1 − erf[−i(u + iv)]}. (28)

In Eq. (28) erf(z) is the error function, and the dimensionless
variable u is defined as a ratio

u = �ω

�D

, (29)

where �ω is the detuning of the frequency and �D is the
Doppler width. The Doppler width is defined as [27]

�D = ω0

√
2kBT

Mc2
, (30)

where kB is the Boltzmann constant, T is the vapor temperature
in Kelvin, M is the mass of an atom, and c is the speed of the
light. The dimensionless variable v is defined as a ratio

v = �

2�D

. (31)

Here � is the collisional broadening width and

�

2
≈ ρσcol

√
2kBT

M
, (32)

where ρ is the vapor number density and σcol is the collisional
cross section.

The behavior of the functions g(u) and f (u) with v 	 1 is
presented in Figs. 3(a) and 3(b), respectively.

In Fig. 3(c) the function h(u) = dg

du
with v 	 1 is presented.

This function represents the behavior of rotation angle caused
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(a) (b) (c)

FIG. 3. Behavior of the functions g(u), f (u), and h(u) with v 	 1 close to resonance: (a) behavior of the rotation angle for optical rotation
(natural or P odd), (b) L−1

0 , where L0 is the absorption length, and (c) the rotation angle for the Faraday effect (ordinary or P,T -odd).

by the Faraday (ordinary or P,T -odd) effect close to the
resonance frequency. As it can be seen from Fig. 3(c), this
function has two maxima (by absolute value): one maximum
at the point of resonance, coinciding with the maximum of
absorption, and another maximum off the resonance where
absorption is small. This second maximum should allow one
to work off-resonance when observing the ordinary Faraday
effect or searching for the P,T -odd Faraday effect with large
optical path length.

The result, Eq. (22) is well known (see, for example,
Eq. (3) in [39]). However, when discussing the ordinary
Faraday effect, the existence of the second maximum is not
important. Usually the optical path length necessary to observe
the ordinary Faraday rotation is smaller than the absorption
length. So normally the Faraday effect drops down away from
the resonance point and even turns to zero at the detuning
equal to �ω ≈ 1�D , which coincides with the maximum of the
optical activity rotation [see Fig. 3(a)]. Figure 3(c) shows that
further from the resonance the Faraday rotation should grow
(by modulus) again and reaches the second maximum at �ω ≈
1.5�D . The existence of the second maximum is crucially
important for observation of the tiny P,T -odd Faraday effect,
when the necessary optical path length should be many times
larger than the absorption length L(ω0).

Now we present the result Eq. (21) in the form Eq. (23),
convolute it with the Maxwell distribution of atomic velocities,
and take into account the Doppler broadening. Extending an
approach applied in [31] for description of the P-odd rotation
to the case of P,T -odd Faraday rotation we find

ψ(ω) = 2π2

3

l

λ
ρe2|〈ns1/2|r|n′p1/2〉|2

1

�D

×h(u,v) × ω(+) − ω(−)

�D

. (33)

Here we have used that 1
�D

d
du

= d
dω

. Equation (33) represents
the P,T -odd Faraday rotation line shape.

B. P,T -odd Faraday rotation signal

Not only the magnitude of rotation angle, but also an amount
of the light transmitted to the point of detection is important
for performing the Faraday experiment. Following [27] we call
the product of the angle ψ(ω) and transmitted function T (ω)
the signal R(ω):

R(ω) = ψ(ω)T (ω). (34)

The transmission function is defined by the Beer-Lambert law:

T (ω) = e−D(ω), (35)

where D(ω) is the optical depth. This depth is defined as

D(ω) = l

L(ω)
. (36)

Here l is the optical path length and L(ω) is the absorption
length:

L−1(ω) = ρσ (ω), (37)

and σ (ω) is the absorption cross section for the light propagat-
ing through a medium. The cross section σ (ω) for transitions
of E1 type can be presented like [31]

σ (ω) = 4π
ω0

�D

f (u,v)
e2|〈ns1/2|r|n′p1/2〉|2

3h̄c
. (38)

This formula follows from the optical theorem [40]

ImA(0) = ω

4π
σ, (39)

where A(0) is the light elastic scattering amplitude for zero
angle and σ is the total cross section. For the resonance case
σ can be understood as an absorption cross section. Then we
have to take into account the relation between the scattering
amplitude and polarizability α(ω) as described in Sec. II B also
for the case of resonance.

The next step is to find the optimal value u = uopt and ρ =
ρopt at which the signal R has its maximum with the fixed
parameter l. Then by inserting this value in Eqs. (33), (34),
and (35) an expression for the maximum rotation signal as a
function of l can be obtained,

Rmax(l) = 2π2

3

l

λ
ρopte

2|〈ns1/2|r|n′p1/2〉|2
1

h̄�D

×h(uopt)
ω(+) − ω(−)

�D

e−ρoptσ (ωopt)l , (40)

where

ωopt = ω0 + �ωopt = ω0 + �Duopt(l). (41)

Equation (40) is a final expression for calculating theP,T -odd
Faraday rotation signal. For this calculation we have to fix
a particular transition in an atom, and then the value of λ

will be also fixed. A natural choice of the transition is an E1
transition ns1/2 → n′p1/2, as it was supposed above. In this
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case the value of the rotation angle is the largest. However,
M1 transitions ns1/2 → n′s1/2, np1/2 → n′p1/2,n

′p3/2 also can
be used. For these transitions the transmission of the light is
larger than for E1 transitions. In the case of np1/2 → n′p3/2

transitions the satellite E2 transitions should be taken into
account. These transitions do not influence the value of the
rotation angle but diminish the light transmission due to the
additional absorption. In the case of M1 transitions between p

states the factor e2|〈ns1/2|r|n′p1/2〉|2 should be replaced by

e2|〈ns1/2|r|n′p1/2〉|2 → μ2
0|〈np1/2(3/2)|l − gS s|n′p1/2(3/2)〉|2,

(42)

where s, l are the spin and orbital angular momenta operators
for an electron, respectively, gS = 2.0023 is a free-electron
g factor, and μ0 is the Bohr magneton. Also, the expression
Eq. (38) for σ (ω) should be replaced by

σ (ω) = 4π
ω0

�D

f (u,v)
μ2

0|〈np1/2(3/2)|l − gS s|n′p1/2(3/2)〉|2
3h̄c

.

(43)

Finally, the choice of the parameters ρ, �D depends on the
conditions of the particular experiments.

In the next sections we present the accurate calculations of
the dependence of Rmax(l) on l for several atoms, demonstrat-
ing the possibility to use the P,T -odd Faraday experiment for
the observation of the electron EDM.

In all the derivations above we neglected the hyperfine
splitting of the levels ns1/2 and n′p1/2. With the hyperfine
interaction taken into account, both these levels are split in
two hyperfine levels with the total atomic angular momenta
F = I + 1/2 and F = I − 1/2, where I is the nuclear spin.
In an external magnetic field or in an external electric field
whenP,T -odd effects are included, both these hyperfine levels
are split in 2(I + 1/2) + 1 or 2(I − 1/2) + 1 components,
respectively. Among the transitions between two sets of sub-
levels for ns1/2 and np1/2 levels there are transitions with the
right and left circularly polarized photons. However, the total
intensities of the right and left circularly polarized transitions
are equal to the intensity of the right and left transitions between
the levels ns1/2 and n′p1/2 in external fields without the
hyperfine splitting. Therefore if in the experiment the hyperfine
structure of atomic levels is not resolved one can use all the
preceding formulas for the evaluation of P,T -odd effects. In
particular, Eqs. (12) and (13) remain valid, and the expressions
for the polarizability Eq. (10) and absorption cross section
Eq. (38) also remain valid. When the hyperfine structure is
resolved and the transitions between the hyperfine sublevels of
different electronic levels are considered, all formulas above
can be easily generalized using the standard techniques for the
hyperfine interaction. For example, the hyperfine splitting of
arbitrary atomic levels and expressions for arbitrary electron
operators with account for hyperfine interactions can be found
in [41].

IV. ELECTRONIC STRUCTURE CALCULATION DETAILS

Direct use of Eqs. (15) and (18) corresponds to the so-
called sum over states method. Formally, the summation in
the equations should include all the excited states. In practice,

TABLE I. Enhancement coefficients Rd for the electron EDM
effect for different atoms and the states under consideration and
the linear Stark shifts for the states in an external electric field
E = 100 kV/cm [12] corresponding to the present electron EDM
bound established in experiments with ThO molecules [14].

Linear Stark shift,
Atom State Rd 10−20 eV

Cs 6s1/2,+1/2 107 0.096
6p1/2,+1/2 −194 −0.17

Tl 6p1/2,+1/2 −526 −0.47
6p3/2,+1/2 7 0.006

Pb 6p2(1/2,1/2)0 0 0
6p7s(1/2,1/2)+1 844 0.76
6p2(3/2,1/2)+1 234 0.21

Ra 6p27s2,1S0 0 0
6p27s7p,3P1,+1 −1595 −1.4

only several contributions to this sum are taken into account.
However, it is possible to reformulate the problem: instead of
explicit summation of the second-order perturbation theory
expression one can calculate expression (15) as the mixed
derivative of the energy with respect to the external electric
field and de [42,43]. Note that in Ref. [43] the approach (“strat-
egy I”) where one adds the interaction with the external electric
field already at the self-consistent field stage of calculation was
formulated.

To calculate Stark shifts in the ground and excited electronic
states of Cs, Tl, Pb, and Ra we used the Fock-space coupled
cluster with single- and double-cluster amplitudes method
[44] to treat electron correlation effects. 1s..3d electrons were
excluded from the treatment. Dyall’s all-electron triple-zeta
(AETZ) [45,46] basis sets were used in the calculations
augmented by diffuse functions from the augmented core
valence triple-zeta (ACVTZ) basis sets [45,46].

E1 and M1 transition matrix elements were calculated using
the multireference linear-response coupled cluster with single-
and double-amplitudes method [47–49]. For these calculations

TABLE II. The enhancement factors RS for the P,T -odd
electron-nucleus interaction effect for different atoms and the states
under consideration and the linear Stark shifts of the states in an
external electric field E = 100 kV/cm [12] corresponding to the
present CS bound established in experiments with ThO molecules
[14] (CS = 5.9×10−9).

Linear Stark shift,
Atom State RS , 10−17e cm 10−20 eV

Cs 6s1/2,+1/2 0.0662 0.039
6p1/2,+1/2 −0.12 −0.071

Tl 6p1/2,+1/2 −0.64 −0.38
6p3/2,+1/2 0.0071 0.006

Pb 6p2(1/2,1/2)0 0 0
6p7s(1/2,1/2)+1 1.04 0.61
6p2(3/2,1/2)+1 0.285 0.17

Ra 6p27s2,1S0 0 0
6p27s7p,3P1,+1 −2.17 −1.3
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FIG. 4. The dependence of the P,T -odd Faraday signal R (in
rad) on the dimensionless detuning u and on the vapor density ρ (in
cm−3) for the E1 transition 6s1/2 → 6p1/2 in a Cs atom. The optical
path length l is assumed to be equal to 100 km.

Dyall’s augmented valence double-zeta (AVDZ) basis set
[45,46] with additional diffuse functions was used in the case
of Pb and Tl. For Cs and Ra we used the Dyall’s all-electron
double-zeta (AEDZ) basis set [45,46]. 1s..3d electrons were
excluded from the correlation treatment of Cs, while 1s..4f

were excluded from the correlation treatment of Tl, Pb,
and Ra.

Electronic calculations were performed within the DIRAC12
[50] and MRCC [51] codes. Matrix elements of operators of
E1,M1 transitions and P,T -odd interactions were calculated
using code developed in Refs. [43,52,53].

The uncertainty of the calculations can be estimated as 15%,
which is sufficient for the present purpose. For example, the
electron EDM enhancement coefficient for the ground state
of Tl (see below) agrees within 8% with previous studies
[54–56] where benchmark calculations of the coefficient have
been performed.

V. NUMERICAL RESULTS AND DISCUSSION

A. Cs atom Z = 55

In the case of Cs the transition 6s1/2 → 6p1/2 (see Fig. 2
with n = n′ = 6) and λ = 895 nm seems to be most favorable

0.001 0.100 10 1000 105 107

10−19

10−17

10−15

10−13

10−11

10−9

R

l

FIG. 6. Dependence of Rmax(l) on the transition 6s1/2 → 6p1/2

in a Cs atom. On the horizontal axis the optical path length is
plotted in centimeters. On the vertical axis the P,T -odd Faraday
rotation signal is plotted in rad assuming a fixed number density
ρopt = 2×1012 cm−3.

for the observation of the P,T -odd effects. The evaluation of
(ω(+) − ω(−)) according to the formulas Eqs. (12) and (13)
results in

(ω(+) − ω(−)) = 174×deE ≈ 1.5×10−21 eV, (44)

where for an electron EDM de we put the value established in
experiment with a ThO molecule [14] (de = 0.9×10−28 e cm)
and for an external electric field we set E = 105 V/cm. See
Table I for the enhancement coefficients Rd for the electron
EDM effect and the corresponding linear Stark shifts. Also see
the Table II for the enhancement factors RS for the P,T -odd
electron-nucleus interaction effect and the corresponding lin-
ear Stark shifts. In what follows for estimates of the P,T -odd
signal R we use the values from the Table I. Analogously, this
can be done also for the P,T -odd electron-nucleus interaction
effect.

For the �D we employ the characteristic value �D ≈
10−6ω0 [31]. Let us estimate the value of the collisional
broadening � according to Eq. (32). The characteristic value
for the collisional cross section is σcol ≈ 0.5×10−14 cm2, and
the standard temperature for the experiments with the vapors of
heavy atoms is about ∼103 K. Then for the value of the atom
vapor density ρ we obtain �/2 = 2×10−10ρ[cm−3] s−1. So
in this case dimensionless v = �

2�D
≈ 10−19ρ[cm−3]. Using

4 8 12 u

4 × 10−10

8 × 10−10

1.2× 10−9

R

(a)
2 × 1012 4 × 1012 6 × 1012 8 × 1012

ρ

4× 10−10

8 × 10−10

1.2× 10−9

R

(b)

FIG. 5. (a) Behavior of the R(u,ρopt) projection of Fig. 4 (in rad) assuming fixed number density ρopt = 2×1012 cm−3, and (b) the behavior
of the R(uopt,ρ) projection of Fig. 4 (in rad) assuming fixed dimensionless detuning uopt = 4.7 (ρ in cm−3).
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FIG. 7. Scheme of the linear Stark splitting for the transition
6p1/2 → 6p3/2.

the optical path l = 100 km [27], our calculation, according to
Eq. (40), gives the dependence R(u,ρ) depicted in Fig. 4. Then
it follows from Fig. 4 that the optimal number density of Cs
atom vapors for the above conditions is ρopt = 2×1012 cm−3

and uopt = 4.7, which gives the maximum value of the effect.
R(u,ρopt) and R(uopt,ρ) projections of Fig. 4 are presented in
Figs. 5(a) and 5(b), respectively.

Then

Rmax(l = 100 km) ≈ 1.4×10−9 rad (45)

for the observation of the electron EDM of the order de =
10−28 e cm.

The calculation also gives the dependence R(l) with fixed
number density ρopt = 2×1012 cm−3 depicted in Fig. 6. For
small l values the dependence R(l) is linear, as it can be seen
immediately from Eq. (40). For large l values this dependence
becomes close to the square root R ≈ √

l as it was obtained
for the optical P-odd activity with theoretical simulations in
[27]. This result shows that the P,T -odd rotation angle ψ ≈
10−9 rad can be obtained with the ICAS experiment by the
optical path length l ≈ 100 km. The detection of such an angle

FIG. 8. Dependence of the P,T -odd Faraday signal R (in rad) on
dimensionless detuning u and on vapor density ρ (in cm−3) for the
M1 transition 6p1/2 → 6p3/2 in Tl atoms. The optical path length l is
assumed to be equal to 100 km.

4 8 12 u

3 × 10−12

6 × 10−12

9 × 10−12

R

FIG. 9. Behavior of the R(u,ρopt) projection of Fig. 8 (in rad)
assuming a fixed number density ρopt = 2×1015 cm−3.

would confirm the bound for the electron EDM of the order
10−28 e cm. Up to date using a cavity-enhanced technique [27],
the signals of about 10−7 rad are available. One should mention
also that the record birefringence phase-shift value measured
in another ICAS experiment [28] is 3×10−13 rad.

B. Tl atom Z = 81

The ground electronic configuration of Tl atoms is 6s26p.
To demonstrate another possible choice of atomic transition we
choose the M1 transition 6p1/2 → 6p3/2. The level splitting
scheme for transition 6p1/2 → 6p3/2 is more complicated
and is depicted in Fig. 7. An external electric field, unlike
the magnetic field, produces the splitting of the atomic level
momenta projections only by modulus, not by sign. The sign
splitting in an external electric field occurs only due to the
P,T -odd linear Stark effect (see Fig. 7). In the strong electric
field of the order 105 V/cm the splitting between 6p3/2 ± 3/2
projections and 6p3/2 ± 1/2 projections should be larger
than the hyperfine structure and well distinguishable in the
experiment. Then the P,T -odd Faraday experiment can be
performed on the transition 6p1/2,±1/2 → 6p3/2,±1/2, as it is
shown in Fig. 7. This transition is of M1 type. (See discussion
in Sec. III about the advantages and disadvantages of using
E1 and M1 transitions in P,T -odd Faraday experiments.)
The wavelength for this transition is λ = 1283 nm. In case of
transition 6p1/2 → 6p3/2, apart from M1 the E2 transition also
takes place. This E2 transition does not contribute to the P,T -
odd Faraday rotation angle but contributes in principle to the

FIG. 10. Scheme of the linear Stark splitting for the transition
6p2(1/2,1/2)0 → 6p7s(1/2,1/2)1. Short up and down arrows denote
the mutual directions of the electron spins.
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FIG. 11. Dependence of the P,T -odd Faraday signal R (in rad)
on the dimensionless detuning u and on the vapor density ρ (in cm−3)
for the E1 transition 6p2(1/2,1/2)0 → 6p7s(1/2,1/2)1 in a Pb atom.
The optical path length l is assumed to be equal to 100 km.

absorption. In this paper we neglect the E2 contribution to the
absorption in the proposedP,T -odd Faraday experiment. This
contribution should be of the same order as the M1 contribution
for the transitions 6p1/2 → 6p3/2. Then, according to Eq. (40)
the totalP,T -odd Faraday signal can be diminished. However,
the M1 and E2 contributions should be additive and of the
same sign, so that the change of the total P,T -odd signal with
inclusion of E2 absorption should not be drastic.

Necessary values for the estimate of the P,T -odd Faraday
signal were calculated and also quoted in Tables I and II.
Similar to the Cs atom case, we perform an estimate of
the P,T -odd Faraday signal. Using the optical path l = 100
km [27], our calculation according to Eq. (40) gives the
dependence R(u,ρ) depicted in Fig. 8. Then it follows from
Fig. 8 that the optimal number density of Tl atom vapors for
the above conditions is ρopt = 2×1015 cm−3 and uopt = 4.0,
which gives the maximum value of the effect. The R(u,ρopt)
projection of Fig. 8 is presented in Fig. 9.

Then

Rmax(l = 100 km) ≈ 1.0×10−11 rad (46)

for the observation of the electron EDM of the order de =
10−28 e cm.

FIG. 13. Linear Stark level splitting for 6p2(1/2,1/2)0 →
6p2(3/2,1/2)1 transition.

C. Pb atom Z = 82

Here we have two possible transitions:
(1) 6p2(1/2,1/2)0 → 6p7s(1/2,1/2)1 is of E1 type with

λ = 286 nm (see Fig. 10).
Necessary values for the estimate of the P,T -odd Faraday

signal were calculated and also quoted in Tables I and II. Using
the optical path l = 100 km [27], our calculation according to
Eq. (40) gives the dependence R(u,ρ) depicted in Fig. 11. Then
it follows from Fig. 11 that the optimal number density of Pb
atom vapors for the above conditions is ρopt = 1×1013 cm−3

and uopt = 4.6, which gives the maximum value of the effect.
R(u,ρopt) and R(uopt,ρ) projections of Fig. 11 are presented in
Figs. 12(a) and 12(b), respectively.

Then

Rmax(l = 100 km) ≈ 2.5×10−9 rad (47)

for the observation of the electron EDM of the order de =
10−28 e cm.

(2) The 6p2(1/2,1/2)0 → 6p2(3/2,1/2)1 transition is of
M1 type with λ = 1360 nm (see Fig. 13).

Necessary values for the estimate of the P,T -odd Faraday
signal were calculated and also quoted in the Tables I and II.
Similar to the M1 case with a Tl atom we perform an estimate
of the P,T -odd Faraday signal. Using the optical path l =
100 km [27], our calculation according to Eq. (40) gives the
dependence R(u,ρ) depicted in Fig. 14. Then it follows from
Fig. 14 that the optimal number density of Pb atom vapors
for the above conditions is ρopt = 1015 cm−3 and uopt = 3.7,

3 6 9 u

8 × 10−10

1.6× 10−9

2.4× 10−9
R

(a)
1.5× 1013 3× 1013 4.5× 1013

ρ

8× 10−10

1.6× 10−9

2.4× 10−9
R

(b)

FIG. 12. (a) Behavior of the R(u,ρopt) projection of Fig. 11 (in rad) assuming a fixed number density ρopt = 1×1013 cm−3 and (b) behavior
of the R(uopt,ρ) projection of Fig. 11 (in rad) assuming fixed dimensionless detuning uopt = 4.6 (ρ in cm−3).
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FIG. 14. Dependence of the P,T -odd Faraday signal R (in rad)
on the dimensionless detuning u and vapor density ρ (in cm−3) for
the M1 transition 6p2(1/2,1/2)0 → 6p2(3/2,1/2)1 in Pb atoms. The
optical path length l is assumed to be equal to 100 km.

which gives the maximum value of the effect. The R(u,ρopt)
projection of Fig. 14 is presented in Fig. 15.

Then

Rmax(l = 100 km) ≈ 5.8×10−12 rad (48)

for the observation of the electron EDM of the order de =
10−28 e cm.

D. Ra atom Z = 88

In this case we choose the transition 6p27s2,1S0 →
6p27s7p,3P 1 of E1 type with λ = 714 nm (see Fig. 16).
Necessary values for the estimate of the P,T -odd Faraday
signal were calculated and also quoted in Tables I and II. Using
the optical path l = 100 km [27], our calculation according to
Eq. (40) gives the dependence R(u,ρ) depicted in Fig. 17. Then
it follows from Fig. 17 that the optimal number density of Ra
atom vapors for the above conditions is ρopt = 1.4×1013 cm−3

and uopt = 4.6, which gives the maximum value of the effect.
R(u,ρopt) and R(uopt,ρ) projections of Fig. 17 are presented in
Figs. 18(a) and 18(b), respectively.

Then

Rmax(l = 100 km) ≈ 4.0×10−9 rad (49)

4 8 12 u

2 × 10−12

4 × 10−12

6 × 10−12
R

FIG. 15. Behavior of the R(u,ρopt) projection of Fig. 14 (in rad)
assuming a fixed number density ρopt = 1×1015 cm−3.

FIG. 16. 6p27s2,1S0 → 6p27s7p,3P1.

for the observation of the electron EDM of the order de =
10−28 e cm.

VI. CONCLUSIONS

Analyzing the data obtained in Sec. V, we conclude that
it is the E1-type transitions (but not M1-type transitions) that
in principle can be favorable for observation of the P,T -odd
Faraday effect. For path lengths of about 100 km claimed in
[27] we obtained the characteristic value of theP,T -odd signal
Rmax(l = 100 km) ≈ (1−4)×10−9 rad for the observation of
the electron EDM at the level of present experiments with
molecules. Concluding, we can state that none of the recent
ICAS experiments can immediately provide the P,T -odd
Faraday study with better results than the ones already achieved
in modern experiments [12–14,14]. However, there are several
ways to enhance this effect within the framework of ICAS
experiments. The combined power of ICAS abilities looks
impressive. In [28] the optical path length of about 70 000 km
in an ICAS experiment was reported. Compared to the optical
path length of 100 km already claimed in [27] and used

FIG. 17. Dependence of the P,T -odd Faraday signal R (in rad)
on dimensionless detuning u and on vapor density ρ (in cm−3) for the
E1 transition 6p27s2,1S0 → 6p27s7p,3P 1 in Ra atoms. The optical
path length l is assumed to be equal to 100 km.
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FIG. 18. (a) Behavior of the R(u,ρopt) projection of Fig. 17 (in rad) assuming a fixed number density ρopt = 1.4×1013 cm−3, and (b) the
behavior of the R(uopt,ρ) projection of Fig. 17 (in rad) assuming fixed dimensionless detuning uopt = 4.6 (ρ in cm−3).

for the estimates throughout our paper, this would give a
30-times improvement of the accuracy of the electron EDM
prediction in the P,T -odd Faraday experiment. This follows
from the established growth of the P,T -odd Faraday rotation
signal as

√
l with the growth of the optical path length l. On

the other hand, the record sensitivity 3×10−13 rad achieved
in another ICAS experiment [29] would give another 104

times improvement of the EDM prediction compared to the
value 4×10−9 rad required for fixation of EDM at the level
10−28 e cm according to our estimates. In total, the electron
EDM of the order 0.3×10−33 e cm could be observed in such
a combined experiment.

Another improvement of the results of theP,T -odd Faraday
effect measurements within the ICAS techniques may be
connected with the laser cooling of the medium atoms. The
Faraday rotation signal enhances with lowering of the vapor
temperature T approximately as T −1/2. Thus the cooling of the
atomic vapors from the 103 K adopted in our estimates to 1 K
(if possible) would shift the de bound to 10−35 e cm, which is
not too far from the SM prediction 10−38 e cm.

Probably more advantageous could be the employment of
molecular vapors for the search of the electron EDM with the
P,T -odd Faraday effect. The molecules used for this purpose
in modern experiments [13,14] are necessarily free radicals.
The lifetimes of diatomic free radicals in a cavity were reported
to be about 5×10−5 s [57]. This means that the optical path
length cannot exceed 15 km. Still, the diatomic molecules
require a much smaller external electric field (about 1 V/cm)
for obtaining the same P,T -odd rotation. The enhancement
coefficients are very large for these molecules (up to 109),
which may significantly improve the present bound for the
electron EDM. Another advantage of the experiments with
molecules is the relative simplicity of the laser cooling.

The systematic errors in the P,T -odd Faraday experiment
are similar to those in the other types of the P,T -odd ex-
periments (magnetic resonance, electron spin precession in
external electric field). The motional magnetic field for the
chaotic motion of atoms in the cavity cannot mimic the EDM
effect since it is always orthogonal to the applied electric
field. The influence of the uncontrolled external static magnetic
fields can be avoided if simultaneously with the measurement
of the P,T -odd Faraday effect the ordinary Faraday effect in
the applied magnetic field parallel to the applied electric field
will be measured. Then after switching the direction of the
electric field the influence of the uncontrolled magnetic fields

will be canceled. The danger comes only from the uncontrolled
alternating magnetic fields with a frequency close to the inverse
time of the electric field switching. A general problem of
excluding the electromagnetic field fluctuations is considered
in Appendix to this paper.
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APPENDIX: ESTIMATES OF THE FIELD FLUCTUATIONS
IN THE P,T -ODD FARADAY EXPERIMENT

Electromagnetic field fluctuations can mimic any small
effect connected with the field interaction with the matter.
The magnitude of any effect of this kind is proportional to the
number Ne of interactions (events). However, the magnitude of
the field fluctuations also grows up with Ne as (Ne)1/2. Then,
to observe a small effect of the order ξ 	 1 and to distinguish
the signal from the field fluctuation, it is necessary to fulfill the
condition

Ne > ξ−2. (A1)

In case of the P,T -odd Faraday effect a small measurable
parameter is the rotation angle ϕ 	 2π of the light polarization
plane. We assume that, for example, ϕ ≈ 10−9 rad, and discuss
the conditions necessary to satisfy inequality (A1). The number
of events Ne is the number of laser photons scattering on the
atoms enclosed in the cavity during the time which is necessary
for the light propagating within the cavity to cover a distance of
about 100 km, i.e., 0.3×10−3 s. After this time the experiment
has to be finished, since the light intensity will be exhausted.
Let the laser beam cross section be σb = 1 mm2 = 10−2 cm2.
This beam is periodically reflected by the mirrors, and the
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distance between these mirrors (the size of the cavity) we
assume to be 1 m = 100 cm. The light travels from one
mirror to another during the time 0.3×10−8 s. If we consider
an excitation process of the type ns → n′p, the relaxation
time (the decay time) will be of the order 10−9 s. This means
that after reflection from a mirror, the light will find all the
atoms again in their ground state. Then we can estimate the
full number of events during the experiment, for example,

Ne = Nγ Na

σex

σb

. (A2)

Here Nγ is the number of photons within the tube with cross
section σb and length l = 100 km = 107 cm = 108 mm during
the time of the experiment, Na is the same for the number of

atoms, and σex is the excitation cross section. For the rough
estimate we accept for σex the value σex ≈ 10−19 cm2 obtained
with formula (38). With the number density for the atoms in
the cavity ρa = 1013 cm−3 we obtain Na = 1018. We accept
that the typical intensity laser I can achieve is

I = Nγ

h̄ωc

V
= 1014 Wt/cm2, (A3)

where h̄ω is the energy of one photon, c is the speed of the light,
and V is the volume, in our case the volume of the long tube
V = 105 cm3. For the valence electrons in heavy atoms, h̄ω ≈
0.1 a.u. ≈ 0.46×10−11 erg. Then from Eq. (A3) it follows
that Nγ ≈ 1027. For the total number of events according to
Eq. (A2) it follows that Ne ≈ 1028 so that the inequality (A1)
Ne > 1018 is safely satisfied.
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