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Enhanced nuclear-spin-dependent parity-violation effects using the 199HgH molecule

A. J. Geddes,1 L. V. Skripnikov,2,3 A. Borschevsky,4 J. C. Berengut,1 V. V. Flambaum,1 and T. P. Rakitzis5,6

1School of Physics, University of New South Wales, Sydney, New South Wales 2052, Australia
2National Research Center, Kurchatov Institute, B.P. Konstantinov Petersburg Nuclear Physics Institute, Gatchina,

Leningrad District 188300, Russia
3Department of Physics, Saint Petersburg State University, Saint Petersburg, Petrodvoretz 198904, Russia

4Van Swinderen Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
5Department of Physics, University of Crete, 71003 Heraklion-Crete, Greece

6Institute of Electronic Structure and Lasers, Foundation for Research and Technology-Hellas, 71110 Heraklion-Crete, Greece

(Received 16 April 2018; published 13 August 2018)

Electron interactions with the nuclear-spin-dependent (NSD) parity-nonconserving (PNC) anapole moment are
strongly enhanced within heteronuclear diatomic molecules. A low-energy optical rotation experiment is being
proposed with the aim of observing NSD PNC interactions in HgH. Based on the relativistic coupled cluster method
we present a sophisticated numerical calculation of the circular polarization parameter P = 2 Im(E1PNC)/M1 ≈
3 × 10−6 κ for the 2�1/2 → 2�1/2 optical transition of HgH, where κ is a dimensionless constant determined
by the nuclear anapole moment. This provides an improvement in sensitivity to NSD PNC by 2–3 orders of
magnitude over the leading atomic Xe, Hg, Tl, Pb, and Bi optical rotation experiments. Therefore we show that
the proposed measurement should be sensitive enough to extract the 199Hg anapole moment and shed light on the
underlying theory of hadronic parity violation.
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I. INTRODUCTION

The parity operation results in the inversion of the spatial
coordinates of the object it acts on. Although many physical
systems are symmetric under parity operations, some give rise
to different physics under the inversion of spatial coordinates.
The violation of symmetry under a parity operation is known
as parity nonconservation (PNC). PNC measurements within
the 133Cs atom [1], which are dominated by nuclear-spin-
independent (NSI) PNC effects, are in outstanding agreement
with predictions from the standard model [2–4]. These have
placed bounds on the energy at which new physics may
be discovered from this process at greater than 0.7 TeV/c2

(see, e.g., [4,5]). Experimental investigation has consequently
shifted towards nuclear-spin-dependent (NSD) PNC effects
with the aim of testing low energy quantum chromodynamics
(QCD) and nuclear theory [6].

The nuclear anapole moment is one example of a manifes-
tation of NSD PNC [7,8] and is the main mechanism behind
the PNC considered in this work. Zeldovich developed the
notion of the anapole moment of an elementary particle in
1957 [9]. Subsequently, Flambaum and Khriplovich proposed
the existence of the nuclear anapole moment, which was found
to be the dominant NSD PNC effect in heavy atoms and
molecules [7,10].

The observable NSD PNC effects of the nuclear anapole
moment include manifestations of the parity-violating electric
dipole transition (E1PNC) in atoms and molecules. PNC effects
have small amplitudes compared to molecular and atomic
electromagnetic processes and are difficult to detect [11].

The nuclear anapole moment has been detected only once
within the 133Cs atom [1], as experimental techniques have

lacked the sensitivity to detect NSD PNC effects with certainty.
This is because NSD PNC is the subdominant form of PNC
in Cs and must be separated from the larger NSI PNC effect.
Therefore NSD PNC calculations in molecules provides a new
window of opportunity to study parity-violating nuclear forces
which create the nuclear anapole moment.

PNC effects are enhanced within diatomic molecules due
to closely spaced rotational levels of opposite parity [10,12].
Therefore diatomic molecules are attractive candidates for
NSD PNC experiments (see, for example, the barium fluoride
Stark-effect proposal [13,14]). We show that mercury hydride
(HgH) in particular is a promising choice for the study of PNC
effects, not only because it gives an enhanced, pure NSD PNC
signal but also because it is easy to make at room temperature.
These effects manifest as E1PNC transitions that violate the
parity selection rules of dipole transitions. The transition can
be detected via interference of the E1PNC amplitude with an
allowed M1 transition amplitude between the same states. This
results in the rotation of the polarization plane of light passing
through a gas of HgH molecules, which is referred to as PNC
optical rotation [15]:

φPNC = −4πl

λ
[n(ω) − 1]

Im(E1PNC)

M1
, (1)

which depends on the experimental parameters ω, n(ω), l,
and λ, which are the optical frequency, refractive index due
to the absorption line, the path length of light, and the optical
wavelength, respectively.

The experimental techniques developed in [16] promise
greater sensitivity in NSD PNC measurements of this type. The
experimental setup includes a cavity in which four mirrors are
placed in a “bow-tie” configuration, allowing polarized light to
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make multiple passes through the cavity before detection. By
increasing the path length of light passing through the sample
within the optical cavity, the experiment is expected to enhance
optical rotation signals by up to 4 orders of magnitude.

For small optical paths l < 2L, where L is absorption length
at a given frequency off-resonance, the optical rotation φPNC

increases linearly with the sample density (or the number of
cavity passes); it reaches φPNC ∼ P = 2 Im(E1PNC )

M1 at ω − ωr =
�D when l = 2L (where the maximum signal-to-noise ratio
is achieved), i.e., at transmission 1/e2 = 13.5%. Here, ωr is
the resonant frequency and �D is the Doppler width, which is
much larger than the natural width. However, for l > 2L in the
resonance, larger values of φPNC can be found by tuning the
wavelength further off-resonance: absorption falls rapidly as
1/(ω − ωr )2, while φPNC falls slower as 1/(ω − ωr ). Therefore
to suppress absorption, one must go to the tail of the resonance,
which will result in large L and φPNC much larger than P . In
order to achieve this we must have sufficiently large effective
l after many reflections of light in the cavity [15].

The advantage of the HgH molecule for the PNC exper-
iment is the large rotational constant, which allows optical
transitions to be resolvable for levels of opposite parity. We
have performed relativistic coupled cluster calculations of the
weak interaction (anapole) matrix elements in the A1

2� 1
2

excited state and the ground X2� state of 199HgH, as well
as the corresponding E1 and M1 transition amplitudes. These
calculations allow for a complete extraction of the nuclear
anapole moment of 199Hg from the proposed experiment.

II. SPIN-ROTATIONAL HAMILTONIAN

199HgH is a heteronuclear diatomic molecule with one
valence electron. The total valence electronic angular mo-
mentum can be expressed as Je = S + L, where S is the
electron spin and L is the orbital angular momentum. HgH has
electronic ground state of X2�1/2 and first electronic excited
state A1

2�1/2. We assign the laboratory frame coordinates x, y,
and z, in which the molecule rotates with angular momentum
N. The magnitude of the separation between discrete rotational
levels in HgH is governed by the state-specific rotational
constant B. Rotational angular momenta can couple to the
electronic angular momentum to form a vector J:

J = N + Je. (2)

J has a projection along the internuclear axis �. Furthermore,
both 199Hg and H have nuclear spin, denoted by I1 and I2,
respectively. A general spin-rotational Hamiltonian Hsr can
be written for both the X2�1/2 and A1

2�1/2 terms [11,17]:

Hsr = BJ2 + �J · S′ + I1 · Â1 · S′ + I2 · Â2 · S′. (3)

Here Â1 and Â2 are second-rank axial tensors describing
the spin-spin interaction between electrons and the nucleus,
and � is the � doubling constant. In the rotating molecular
frame described by ξ , η, and ζ , the tensor contractions

I · Â · S′ = A|| I0S′
0 − A⊥ (I1S′

−1 + I−1S′
1) (4)

are determined by the parallel and perpendicular hyperfine pa-
rameters A|| and A⊥. S′ is the effective spin whose components
act on the projection �. If we express the tensor components

of S in the rotating molecular frame we get [18,19]

S′
n̂|�〉 = �|�〉,

S′
±|� = ∓1/2〉 = |� = ±1/2〉, (5)

S′
±|� = ±1/2〉 = 0.

The angular momenta coupling scheme in the case of
X2�1/2 ground states follows that known as Hund’s case b.
The total electronic angular momentum Je ≈ S, since for this
state � = 0, where � is the projection of electronic orbital
angular momentum on the molecular axis. Therefore, we can
use Je ≈ S and the substitution J = N + S [11,17]. Next we
give the first and second nuclear spin couple in succession [17]:

F1 = J + I1, (6)

F = F1 + I2. (7)

Furthermore, the � doubling constant is defined in this scheme
to be

� = −2B + γ,

where γ is the spin-doubling constant.
Conversely, the A1

2�1/2 state follows the coupling scheme
described by Hund’s case a. The projection of total angular
momentum � in the direction of a unit vector along the
internuclear axis n̂ couples to N to give

J = N + � n̂.

I1 and I2 couple to J to form F1 and F in turn, as in Eqs. (6)
and (7).

The basis states that will be used in this work are defined
by quantum numbers |JpF1FM〉, where p is the parity and
M is the projection of the total angular momentum F on the
laboratory axis.

III. WEAK INTERACTION CONSTANTS

The nuclear anapole moment can interact (via its magnetic
field) with an electron wave function with nonzero total angular
momentum [20]; this is one mechanism behind NSD PNC
interactions in atoms and molecules and can be described using
a Hamiltonian of the form

HP = κ
GF√

2
α · I ρ(r), (8)

where GF = 2.222 49 × 10−14 a.u. is the Fermi coupling
constant in atomic units and ρ(r) is the normalized nuclear
density. κ is the dimensionless constant determined by the
nuclear anapole moment to be extracted from experiment. It
has been estimated as [20]

κ ≈ 9

10
g

(
αμ

mr0

)
A

2
3 , (9)

where all nuclear parameters are from the heavy nucleus: A

is the number of nucleons in the nucleus, m is the mass of
the proton, μ is the magnetic moment of the external nucleon,
g is a dimensionless constant describing the strength of the
weak nucleon-nucleus interaction, α = 1

137 is the fine-structure
constant, and r0 = 1.2 × 10−13 cm is the internuclear distance.
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It is possible to average over fast electron motion to obtain
the effective weak interaction coefficient Wa , which will be
constant for a given molecular state. An effective P-odd
Hamiltonian can be written as a T-even pseudoscalar formed
from the products of the vectors in the system, namely, I, the
effective electron spin S′, and direction of the internuclear axis
n [20]. Therefore, in the presence of anapole moment within
the Hg nucleus the total Hamiltonian of HgH will also include
the following term:

Heff = Waκ (n × S′) · I, (10)

where Wa can be written as

Wa = GF√
2
〈��=1/2|ρ(r)α+|��=−1/2〉. (11)

��=1/2 can be the 2�1/2 or 2�1/2 state, α+ is defined as

α+ = αξ + iαη,

and αξ , αη are the Dirac matrices in the molecular coordinate
system. An approximate expression for Wa can be used to
check the corresponding calculations and has been found
in [20] to have the form

Wa ≈ εs

ν
3
2
s

εp

ν
3
2
p

Ry
2
√

2√
3π

GF m2
eα

2Z2RW

(−1)I+ 1
2 −l

(
I + 1

2

)
I (I + 1)

,

(12)

where the relativistic correction term RW can be written as

RW = 2γ + 1

3

(
aB

2Zr0A
1
3

)2−2γ

. (13)

νs and νp are the effective quantum numbers for the s and
p atomic Hg orbitals, respectively, εs and εp are weighting
coefficients for the contributions of each atomic orbital, me

is the mass of the electron, Ry = 13.6 eV is the Rydberg
constant, l is the orbital angular momentum of an external
unpaired nucleon, Z is the atomic number of the heavy nucleus,
and aB is the Bohr radius.

We have calculated the Wa (2�1/2) and Wa (2�1/2) con-
stants for HgH using two different methods: the first was a
Dirac-Hartree-Fock (DHF) calculation performed as a way of
checking the scaling relation between Wa and Z, and the second
was an accurate coupled-cluster (CC) calculation which we
use in our subsequent calculation of the circular polarization
parameter P .

In the first method, all Wa (2�1/2) and Wa (2�1/2) con-
stants were calculated with the relativistic program package
DIRAC15 [21] using the DHF method. The DHF method
employs the relativistic, multielectron Dirac Hamiltonian in
conjunction with the Hartree-Fock wave function. The Wa

constants for ZnF and CdH were calculated within the same
approach and used to verify that theWa values scale as expected
with the square of the atomic number Z. The final values are
displayed in the first column of Table I.

The calculations were carried out at the experimental bond
lengths of both the ground and the excited states of the
three molecules [23]. The heavy Zn, Cd, and Hg atoms were
described using Dyall’s cc-pvqz basis sets [24,25], and for the
H atom we used the uncontracted aug-cc-pVTZ basis set [26].

TABLE I. Values for the effective weak interaction coefficients
Wa (2�1/2) (ground state) and Wa (2�1/2) (first excited state) calcu-
lated for group-12 hydrides. The Wa (2�1/2) for HgH is in good
agreement with the semiempirical estimate of 1800 Hz presented
in [22].

DHF (Hz) CC (Hz)
Mol. Wa (2�1/2) Wa (2�1/2) Wa (2�1/2) Wa (2�1/2)

ZnH 49.2 –0.336
CdH 227 –5.38
HgH 3110 –298 3335 −419

Finally, we multiplied the output by a core polarization scaling
factor used in other works [27].

The ratio Wa (2�1/2)/RW should scale linearly with Z2,
where RW is the relativistic factor defined by (13). However,
we observe (see Fig. 1) a gradient of 2.6 instead of the expected
gradient of 2. Similarly, we find Wa (2�1/2)/RW ∼ Z5.3 rather
than the expected Z4. Both cases can be understood by the
filling of the Hg atomic d orbital close to the nucleus. Upon
filling, the d orbital expands relativistically, hence increasing
effective nuclear charge and enhancing relativistic and NSD
PNC effects. A similar trend is also seen in the Wa (2�1/2)
constants for HgF, ZnF, and CdF in [27].

Furthermore, Wa constants for the HgH 2�1/2 and 2�1/2

electronic states have been calculated within the relativistic
Fock-Space coupled cluster with single- and double-cluster
amplitudes method. Thirty-five outer-core and valence elec-
trons were included in correlation treatment. For Hg and H
atoms Dyall’s uncontracted core-valence triple-zeta (cv3z)
basis sets [24,28] were used. The Wa constants were calculated
at the equilibrium internuclear distance for the corresponding

FIG. 1. Ratio of weak interaction constant Wa to relativistic factor
RW plotted against Z of the heavy nucleus for Z = 30, 48, and 80,
which corresponds to ZnH, CdH, and HgH, respectively. [Wa (2�1/2)
values for each molecule can be found in the first and second column
of Table I.] Circles, solid line of best fit: ground state 2�1/2; diamonds,
dashed line of best fit: excited state 2�1/2. Calculated using the DHF
method (see text).
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electronic states and are presented in the second column of
Table I. There is good agreement between the DHF and CC
methods of calculating Wa constants in HgH, with the two
methods varying by 7% for Wa (2�1/2) and 29% for Wa (2�1/2).

IV. PNC E1 AMPLITUDE

The parity-violating dipole transition amplitude E1PNC can
be expressed as

〈i|E1PNC|k〉
=

∑
j

〈i|d · E0|j 〉〈j |Heff |k〉
Ek − Ej

+ 〈i|Heff |j 〉〈j |d · E0|k〉
Ei − Ej

,

(14)

where E0 is the external electric field and d is the dipole
moment operator. In the first term of (14) |j 〉 and |k〉 are sub-
levels of opposite parity situated in the ground 2�1/2 electronic
state. In the second term of (14) |i〉 and |j 〉 are sublevels of
opposite parity corresponding to the 2�1/2 electronic state.
Expressions that appear in the decoupling of Eq. (14) can be
found in the Appendix of Ref. [17], e.g., for the present case
(I1 = I2 = 1/2),

〈JpF1FM|Heff |J ′(−p)F ′
1F

′M〉

= −1

4
iWaκ δF1F

′
1
δFF ′

√
3

2

{
J J ′ 1

1/2 1/2 F1

}

× (−1)F1+J ′+1/2χJ XJJ ′ , (15)

where

χJ = ±p (−1)J−1/2,

XJJ = (2J + 1)

√
2J + 1

J (J + 1)
,

XJJ−1 = XJ−1J =
√

(2J + 1)(2J − 1)

J
;

the plus sign is taken for the 2�1/2 state and the minus sign is
taken for the 2�1/2 state according to [17].

To obtain E1 and M1 amplitudes between 2�1/2 and 2�1/2

electronic states we require the following matrix elements
which we have calculated:

D+ = 〈
�2�1/2

∣∣d+
∣∣�2�−1/2

〉 = 0.7 a.u., (16)

G+ = 〈
�2�1/2

∣∣L+ − gSS+
∣∣�2�−1/2

〉 = 1.4 a.u. (17)

Here d+ = dξ + idη is the dipole moment operator, L and S are
the electronic orbital angular momentum and spin operators,
and gS = −2.0023 is the free-electron g factor. Corresponding
parallel components are small due to electronic configuration
and are neglected here.

Matrix elements (16) and (17) have been calculated using
the relativistic linear-response coupled cluster with the single-
and double-cluster amplitudes methods [29] within the Dirac-
Coulomb Hamiltonian. These calculations were performed at
the internuclear distance which is the average of the 2�1/2 and
2�1/2 equilibrium distances (R = 3.14 Bohr [30,31]).

For the correlation calculation we used the MRCC [32] and
DIRAC15 [21] codes. For calculation of matrix elements over
molecular bispinors the code developed in Refs. [33–35] was
used.

V. RESULTS AND DISCUSSION

We have chosen to study a transition that occurs between the
zeroth vibrational levels of the HgH molecule; this is because
the (νX = 0 → νA1 = 0) transition has the maximal value of
the square of vibration wave functions overlap (Frank-Condon
factor), which is 0.5 [30] and should result in a stronger
transition compared to other vibrational states.

To calculate the circular polarization parameter P =
2 Im(E1PNC)/M1 we consider the ground rotational levels
in both electronic states, set F1 = 0, and use the following
estimates for the energy separation between levels of opposite
parity, �E:

�E(2�1/2) = 2B(2�1/2) − γ = 8.64 cm−1,

�E(2�1/2) = � = 3.36 cm−1,

where the experimental constants B(2�1/2) = 5.3888 cm−1,
γ = 2.14 cm−1, and � = 3.36 cm−1 were taken from
Ref. [36].

It should be noted that the hyperfine splitting is considerably
smaller than the rotational constant B for both electronic states
under consideration, e.g., A1,||(2�1/2) is about 20 times smaller
than the rotational constant for the 2�1/2 state. Therefore,
we neglect it below. For more accurate estimates one should
numerically diagonalize the spin-rotational Hamiltonian (3).

Furthermore, the estimated uncertainty of the calculated
Wa parameters are 15%–20%. This can be minimized con-
siderably by applying the combined technique developed in
Refs. [33,37,38], but for our current purposes it is enough.

Using the aforementioned energy separations, the matrix
elements (17), (16), coupled-cluster Wa constants for HgH
from Table I, and neglecting the possible phase difference in
the terms in Eq. (14) we obtain our final result:

P = 3 × 10−6κ. (18)

The leading contribution comes from the mixing of opposite
parity levels of the 2�1/2 state, which is about 3 times larger
than the term due to the mixing of opposite parity levels of the
2�1/2 state. It is also worth mentioning that we have considered
199Hg; however, 201Hg is also suitable for this experiment.

VI. CONCLUSION

The 199HgH molecule is a good candidate for PNC optical
rotation experiments, as it has closely spaced levels of op-
posite parity as well as a rotational constant large enough to
resolve optical transitions between those levels. The circular
polarization parameter was calculated to be P = 3 × 10−6κ ,
which is 2–3 orders of magnitude larger than the estimated
value for NSD PNC effects in atomic Xe, Hg, Tl, Pb, and
Bi [15,39]. Furthermore, HgH gives a pure NSD PNC signal
needing a single transition for measurement; in contrast, atomic
experiments also give a much larger NSI PNC signal, requiring
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measurements on at least two different hyperfine transitions to
isolate the small NSD PNC effect, which increases noise and
possibly systematic effects.
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