# Ab initio study of P,T-parity violation effects in polar heavy-atom molecules

Anatoly V. Titov

**PNPI QChem** 

Group

Petersburg Nuclear Physics Institute St.-Petersburg, RUSSIA

PNPI (SPb):N.Mosyagin, A.Petrov, T.Isaev, M.KozlovSPb Uni.:I.Tupitsyn, A.Panin, L.LabzowskyTel-Aviv Uni.:U.Kaldor, E.EliavUni. of Wuppertal:R.Buenker, A.Alekseyev, H-P.LiebermannYale Uni.:D.DeMille

**Funding:** *RFBR, INTAS, DFG, CRDF, ...* 

# Outline

Historical background

•Why measure EDMs?

•How to measure an EDM

•Computational methods •GRECP, NOCR, PT2CI, FS-RCC, SODCI

•Calculations of YbF, TIF & PbO\*

### Milestones in studying PNC effects:

1949: Analyzing Einstein's relativity theory, Dirac states that P- and T-invariance is not necessary attribute of the nature laws (i.e. of physical dynamic theories).

1950: Purcell & Ramsey state that the validity of P- or/and T-odd theories must be confirmed experimentally. The search for the neutron EDM is initiated.

1956: Puzzle of  $\tau - \theta$  mesons:  $\theta \rightarrow 2\pi (L=0)$ ;  $\tau \rightarrow 3\pi (L=0)$ , but  $m_{\tau} \approx m_{\theta}$ ;  $T_{\tau}^{1/2} \approx T_{\theta}^{1/2}$ .

Analyzing the decays, Lee and Yang have suggested nonconservation of space parity, P, in decay of  $K(J^P=0^-)$  on  $\pi$ -mesons  $(J^P=0^-) / K_{\pi 3} \equiv \tau$ ;  $K_{\pi 2} \equiv \theta / .$ 

They suggest to study spirality (p·S) in decay experiments.

1957: Wu *et al.* discover the P-violation in  $\beta$  decay of <sup>60</sup>Co ( $n \rightarrow p + e^- + v_e$ ).

To "save" the world from the left-handed asymmetry, Landau, Lee & Yang suggest invariance of the nature laws with respect to the combined CP-parity.

Landau:  $d \sim S$ , i.e. the proportionality coefficient is P,T-odd, otherwise d=0.

1964: Christenson, Cronin, Fitch & Turlay discover nonconservation of the combined inversion, CP, in decay  $K_{l}^{0}$  (CP=-1)  $\rightarrow 2\pi$  (CP=+1 !).

1967: Sandars suggests to use polar *heavy-atom* molecules for PNC experiments because of relativistic enhancement  $\sim \alpha^2 Z^3$  and  $E_{\rm mol}/E_{\rm ext} \sim 10^5$ .

He initiates the search for the P,T-odd effects on  $^{205}$ TIF in Oxford (UK).

1978: Barkov & Zolotarev (Novosibirsk, Russia) found that the atomic Bi vapor rotate the polarization plane of the laser ray (in search for the *neutral weak interaction* of electrons with nuclei). Similar experiments are performed by Sandars *et al.* (Oxford, UK) and Fortson *et al.* (Seattle, USA).

A few months later it was confirmed by Atwood *et al.* (Stanford, USA) in deeply-inelastic scattering of electrons on deuterium & hydrogen.

Labzowsky (St.-Petersburg) has proposed to use the PbF molecule ( ${}^{2}\Pi$ ) for studying P-odd effects because of closeness of levels of opposite parity due to  $\Lambda$ -doubling; he initiated study of PNC effects in SPb. Sushkov & Flambaum (Novosibirsk) suggested to use  $\Omega$ -doubling to search for the electron EDM.

- 1980: First *ab-initio nonrelativistic* calculations of PNC effects in TIF followed by the relativistic scaling were performed by Hinds & Sandars. First data from the TIF experiment are obtained for the proton EDM etc.
- 1983: Discovery of  $W^{\pm}$  and then  $Z^0$  bozons by Rubia with coworkers in CERN thus confirming the Standard electroweak Model.

1985: Khriplovich has suggested to use  $\Omega$ -doubling in diatomic radicals containing heavy elements with the  ${}^{2}\Sigma_{1/2}$  ground state for the PNC experiments.

The first *semiempirical* calculations on BaF, HgH and HgF (Kozlov) and *ab-initio* two-step calculations on PbF (Titov *et al.*) are performed in SPb.

**1987**: Flambaum suggest to use  $PbO^*(J=1)$  for PNC search in his DSc thesis.

- 1991: The last series of the <sup>205</sup>TIF experiments is finished at Yale (USA) and the best limitation on the proton EDM  $d_p = (-4 \pm 6) \times 10^{-23} \ e \cdot cm$  is obtained. Petrov *et al.* (2002) recalculated it as  $d_p = (-1.7 \pm 2.8) \times 10^{-23} \ e \cdot cm$ .
- 2002: The last series of the <sup>205</sup>Tl experiments is finished in Berkeley (USA) and limitation on the electron EDM,  $d_e = (-6.9 \pm 7.4) \times 10^{-28} e \cdot cm)$ , is obtained.

The first result are obtained by Hinds group on the <sup>174</sup>YbF molecular beam experiment at Sussex(UK) for the electron EDM,  $d_e = (-0.2 \pm 3.2) \times 10^{-26} e \cdot \text{cm}$ .

Now: New series of the electron EDM experiments on YbF, PbF, and on PbO\* are in progress in London (UK), Oklahoma and Yale (USA), correspondingly, and some more candidates, e.g. HgH, HgF, and TeO\*, are discussed.

# Calculations of PNC effects in heavy-atom molecules:

- In 1967 Sandars suggested to use polar heavy-atom molecules for PNC experiments because of relativistic enhancement ~α<sup>2</sup>Z<sup>3</sup> (1965) and E<sub>mol</sub>/E<sub>ext</sub> ~10<sup>5</sup>. He initiated the search for the P,T-odd effects on <sup>205</sup>TIF in Oxford and estimated the enhancement semiempirically.
- First ab initio nonrelativistic calculations of PNC effects in TIF followed by the relativistic scaling were performed by Hinds & Sandars in 1980 and by Coveney & Sandars in 1983 (Oxford, UK).
- Two-step relativistic calculations at SPbSU & PNPI (SPb): <u>without</u> <u>correlations:</u> on PbF & HgF (1985-1991); <u>with correlations:</u> on YbF (1996,1998), BaF (1997), TIF (2002), PbO\* (2004), HI\* (2005).
- First Dirac-Fock calculations on TIF (1997) and YbF (1998) are performed by Parpia (USA) and by Quiney et al. (EU).

# Why measure EDMs?

• EDMs violate Parity (P) and Time Reversal (T) Symmetries:

L. Landau, Pis'ma ZhETP 32, 405 (1957).

• P,T-violation = window to physics beyond the standard model:





M. Pospelov & I. Khriplovich, J.Nucl. Phys. 53(4) (1991).

Status

#### **Experimental limit** on the electron EDM:

B. Regan, E. Commins, C. Schmidt, D. DeMille, *PRL* **88**, 071805 (2002).

 $|d_e| < 1.6 \times 10^{-27} e \cdot cm$ 

| Physics model          | [d <sub>e</sub> ]                    |
|------------------------|--------------------------------------|
| Standard Model         | <10 <sup>-38</sup> e⋅cm              |
| Left-right symmetric   | 10 <sup>-26</sup> -10 <sup>-28</sup> |
|                        | e∙cm                                 |
| Lepton flavor-changing | 10 <sup>-26-</sup> 10 <sup>-29</sup> |
| Lepton navor-changing  | e∙cm                                 |
| Multi Higgs            | 10 <sup>-27</sup> -10 <sup>-28</sup> |
| ividiti-i nggs         | e.cm                                 |
| Technicolor            | ~10 <sup>-29</sup> e.cm              |
| Supersymmetry          | ~10 <sup>-27</sup> e.cm              |

# Experimental detection of an EDM

 $H = -\overline{\mu} \cdot \overline{B} - \overline{d} \cdot \overline{E}$ 



Statistical sensitivity:

Single system with coherence time  $\tau$  :  $\delta \omega = \frac{1}{\tau}$ 

**N** uncorrelated systems measured for time T  $\tau$ :  $\delta d = \frac{\hbar}{2E} \frac{1}{\sqrt{2\tau TN}}$ 

# Effective relativistic Hamiltonians

The most popular Hamiltonians used in calculations of heavy-atom molecules:

- Dirac-Coulomb(-Breit) Hamiltonian is the most accurate relativistic approximation that is used in practice when calculating many-electron systems.
- Two-component all-electron approaches:
  - Douglas-Kroll transformation (of 2nd & 3rd orders);
  - zero/first-order relativistic approximations (ZORA/FORA).
- Relativistic effective core potentials (RECPs) employing operators of types:
  - radially-local (semi-local) pseudopotentials;
  - Huzinaga-type (*ab initio*) model potentials (using level-shift terms for "freezing" core shells);
  - separable pseudopotentials (applied to many-atomic systems);
  - core polarization potentials (containing one- & two-electron terms).

# Effective relativistic Hamiltonians

# The most popular Hamiltonians used in calculations of heavy-atom molecules:

Dirac-Coulomb(-Breit) Hamiltonian is the most accurate relativistic approximation that is used in practice when calculating many-electron systems.

•Two-component all-electron approaches:

- Douglas-Kroll transformation (of 2nd & 3rd orders);
- zero/first-order relativistic approximations (ZORA/FORA).
- Relativistic effective core potentials (RECPs) employing operators of types:
- radially-local (semi-local) pseudopotentials;
- Huzinaga-type (*ab initio*) model potentials (using level-shift terms for "freezing" core shells);
- separable pseudopotentials (applied to many-atomic systems);
- core polarization potentials (containing one- & two-electron terms).

# Radial parts of large components of spinors $5s_{1/2}$ and $6s_{1/2}$ and of corresponding pseudospinors for the Thallium atom.



# Radial parts of the potential components for pseudospinors $5s_{1/2}$ and $6s_{1/2}$ of the Thallium atom.



### Generalized relativistic ECP

- The inner core (IC), outer core (OC) and valence (V) electrons are first treated employing <u>different</u> approximations for each (including relaxation of IC shells).
- GRECP involves both radially-local, separable and Huzinagatype potentials (shifting the core energies) as its components.
- The GRECP operator includes terms of other types (selfconsistent and term-splitting) for economical treatment of *transition metals, lanthanides and actinides.*
- The outermost core pseudoorbitals (*nodeless*) together with valence pseudoorbitals (*nodal*) are used for constructing the GRECP components.
- Quantum electrodynamics effects (Breit etc.) and correlations with the IC shells can be efficiently treated within GRECPs.

#### Generalized RECP operator with separable correction:

$$\begin{aligned} \mathbf{U}_{\mathrm{GS}}^{\mathrm{Ef}} &= U_{n_{v}LJ}(r) + \sum_{l=0}^{L} \sum_{j=|l-1/2|}^{l+1/2} [U_{n_{v}lj}(r) - U_{n_{v}LJ}(r)] \sum_{m=-j}^{j} |ljm\rangle \langle ljm| \\ &+ \sum_{n_{c}} \sum_{l=0}^{L} \sum_{j=|l-1/2|}^{l+1/2} \{ [U_{n_{c}lj}(r) - U_{n_{v}lj}(r)] \widetilde{\mathbf{P}}_{n_{c}lj} + \widetilde{\mathbf{P}}_{n_{c}lj} [U_{n_{c}lj}(r) - U_{n_{v}lj}(r)] \} \\ &- \sum_{n_{c},n_{c}'} \sum_{l=0}^{L} \sum_{j=|l-1/2|}^{l+1/2} \widetilde{\mathbf{P}}_{n_{c}lj} [\frac{U_{n_{c}lj}(r) + U_{n_{c}'lj}(r)}{2} - U_{n_{v}lj}(r)] \widetilde{\mathbf{P}}_{n_{c}'lj} , \qquad (1) \\ &\widetilde{\mathbf{P}}_{n_{c}lj} = \sum_{m=-j}^{j} |n_{c}\widetilde{lj}m\rangle \langle n_{c}\widetilde{lj}m| . \end{aligned}$$

- The separable terms (the second and third lines in Eq.(1)) are added to the conventional radially-local RECP operator.
- These terms take into account the difference between the potentials acting on the outercore and valence electrons with the same *I* & *j*.

GRECP accuracy

- The GRECPs provides the level of "chemical accuracy" (1 kcal/mol or 350 cm<sup>-1</sup>) for valence energies.
- The GRECP accuracy can be even higher than the accuracy of the *frozen core approximation* when accounting for the inner core relaxation terms.
- The cumulative computational precision is *limited by current possibilities of correlation methods* and codes.
- The expenses of correlation treatment can be seriously reduced as compared to Dirac-Coulomb-Breit methods when using basis of *spin-orbitals* instead of *spinors*.

The radial parts of the large component of the  $6p_{1/2}$  bispinor and the corresponding pseudospinor obtained in equivalent Dirac-Fock and 21-electron GRECP/SCF calculations for the state averaged over the relativistic  $6s_{1/2}^2 6p_{1/2}^1$  configuration of Thallium. Their difference is multiplied by 1000. The GRECP is generated for the nonrelativistically averaged  $6s_{1}^16p_{1}^16d_{1}^1$  configuration.



Radial parts of the  $7s_{1/2}$  spinor (all-electron Dirac-Fock) and pseudospinor 32-electron GRECP/SCF) of Uranium for the state averaged over the nonrelativistic  $5f^26d^17s^2$  configuration and their difference multiplied by 1000.



#### **Nonvariational One-Center Restoration (NOCR)** of electronic structure in cores of heavy-atoms in a molecule:

- Generation of equivalent basis sets of one-center four-component spinors  $\begin{pmatrix} f_{nlj}(r)\chi_{ljm} \\ g_{nlj}(r)\chi_{2j-l,jm} \end{pmatrix}$  and smoothed two-component pseudospinors  $\tilde{f}_{nlj}(r)\chi_{ljm}$  in finite-difference DF(B) and GRECP/SCF calculations of the same atomic configurations.
- The molecular *pseudospinorbitals* are then expanded in the basis set of one-center two-component atomic *pseudospinors*

$$\tilde{\phi}_{i}(\mathbf{x}) \approx \sum_{l=0}^{L_{max}} \sum_{j=|l-1/2|}^{j=|l+1/2|} \sum_{n,m} c_{nljm}^{i} \tilde{f}_{nlj}(r) \chi_{ljm} , \qquad (2)$$

where x denotes spatial and spin variables,  $r \leq R_c^{\text{rest}}$ ,  $R_c^{\text{rest}} \geq R_c$ .

• Finally, the atomic two-component pseudospinors in the molecular basis are replaced by equivalent four-component spinors and the expansion coefficients from Eq. (2) are preserved:

$$\phi_{i}(\mathbf{x}) \approx \sum_{l=0}^{L_{\max}} \sum_{j=|l-1/2|}^{j=|l+1/2|} \sum_{n,m} c_{nljm}^{i} \begin{pmatrix} f_{nlj}(r)\chi_{ljm} \\ g_{nlj}(r)\chi_{l'jm} \end{pmatrix} .$$
(3)

### Variational one-center restoration



#### Spin-rotational Hamiltonian for YbF, HgF etc.

For the <sup>171</sup>Yb isotope with the nuclear spin  $I=\frac{1}{2}$ , the molecular spin-rotational degrees of freedom are described by the Hamiltonian:

$$\mathbf{H}_{\rm sr} = B\mathbf{\vec{N}}^2 + \gamma \mathbf{\vec{S}}\mathbf{\vec{N}} - D_e \vec{\lambda}\vec{E} + \mathbf{\vec{S}}\mathbf{\hat{A}}\mathbf{\vec{I}} + \mathbf{H}_{\rm sr}^{\rm P,T}$$
(9)

- $\vec{N}$  is the rotational angular momentum;
- B is the *rotational constant*;
- $\vec{\mathbf{S}}$ ,  $\vec{\mathbf{I}}$  are the *effective spins* of the *electron* and the Yb *nucleus*;
- $\vec{\lambda}$  is the *unit vector* from Yb to F;
- $\gamma$  is the spin-doubling constant for spin-rotational interaction;
- $D_e$  is the molecular dipole moment;
- $\vec{E}$  is the external electric field;
- $\hat{A}$  is the axial tensor describing *magnetic HFS* on the Yb nucleus:

$$\mathbf{H}_{\mathrm{sr}}^{\mathrm{hfs}} = \frac{\mu_N}{I} \frac{\vec{\mathbf{I}} \cdot \vec{\alpha} \times \vec{r}}{r^3} , \qquad \vec{\alpha} = \begin{pmatrix} 0 & \vec{\sigma} \\ \vec{\sigma} & 0 \end{pmatrix} , \qquad (10)$$

that can be described by *isotropic* and *differential* HFS constants:

$$A = (A_{\parallel} + 2A_{\perp})/3;$$
  $A_{\rm d} = (A_{\parallel} - A_{\perp})/3$ 

#### P- and P,T-odd terms in H<sub>sr</sub> for YbF, HgF etc.

$$\mathbf{H}_{\mathrm{sr}}^{\mathrm{P,T}} = W_{\mathrm{A}} k_{\mathrm{A}} \vec{\lambda} \times \vec{\mathbf{S}} \cdot \vec{\mathbf{I}} + (W_{\mathrm{S}} k_{\mathrm{S}} + W_{d} d_{\mathrm{e}}) \vec{\mathbf{S}} \vec{\lambda} .$$
(11)

- the <u>first</u> of them is interaction of the electron spin with the anapole moment of the nucleus k<sub>A</sub>;
- the <u>second</u> one corresponds to the scalar P, T-odd electron-nucleon interaction, k<sub>S</sub> is its dimensionless constant;
- the <u>third</u> one describes interaction of the electron EDM  $d_e$  with the internal molecular field  $\vec{E}_{mol}$ :

$$\mathbf{H}_{d} = 2d_{\mathrm{e}} \begin{pmatrix} 0 & 0\\ 0 & \vec{\sigma} \end{pmatrix} \cdot \vec{E}_{\mathrm{mol}} , \qquad (12)$$

$$W_d d_e = 2 \langle {}^2 \Sigma_{1/2} | \mathbf{H}_d | {}^2 \Sigma_{1/2} \rangle .$$
<sup>(13)</sup>

 $E_{\text{eff}} = \frac{1}{2}W_d$  is an *effective electric field* on the unpaired electron.

 $W_A, W_S, \& W_d$  depend on the *electron spin-density* in a vicinity of nuclei like A and  $A_d$ .

#### First two-step calculations of <sup>199</sup>HgF and <sup>207</sup>PbF

|       |    | $A_{\parallel}$ (MHz) | $A_{\perp}$ (MHz) | $G_{\parallel}$ | $G_{\perp}$ | $\frac{W_d}{\left(10^{24}\frac{\text{Hz}}{\text{e cm}}\right)}$ | $W_S$ (kHz) |
|-------|----|-----------------------|-------------------|-----------------|-------------|-----------------------------------------------------------------|-------------|
| HgF ( | a) | 22621                 | 21880             | 1.993           | 1.961       |                                                                 |             |
| (     | b) |                       |                   |                 |             | -48                                                             | -191        |
| (     | c) | 24150                 | 23310             | 1.996           | 1.960       | -48                                                             | -185        |
| PbF ( | d) | 8690                  | -7460             | 0.034           | -0.269      | 10                                                              | 51          |
| (     | e) | 9550                  | -8240             | 0.114           | -0.438      | 18                                                              | 99          |
| (     | c) | 10990                 | -8990             | 0.040           | -0.326      | 14                                                              | 55          |

(a) experimental data [L.B.Knight, Jr. *et al.*, *JCP* **74**, 6009 (1981)];

- (b) semiempirical results [M.G.Kozlov, Sov. Phys. -JETP 62, 1114 (1985)];
- (c) ab initio calculations [Yu.Yu.Dmitriev et al., PLA 167, 280 (1992)];
- (d),(e) *ab initio* calculations with semiempirical accounting for the spin-orbit mixing models [M.G.Kozlov *et al.*, *JPB* **20**, 4939 (1987)].

#### Why is accurate accounting for correlation important?

As an illustrative example, let us consider an electronic state of a many-electron system which is described by the CI expansion of a normalized WF:

$$\Psi = \Psi_S + \Psi_U \equiv \sum_{s=1}^{N_S \sim (10^2 \div 10^6)} C_s \Phi_s + \sum_{u=1}^{N_U \gg N_S} C_u \Phi_u , \qquad (4)$$

$$\left(1 - \sum_{s=1}^{N_S} |C_s|^2\right) = \sum_{u=1}^{N_U} |C_u|^2 \equiv w_U \ll 1 .$$
(5)

where S stands for selected, and U for unselected (or rest) configurations. Estimates for  $\{|C_u|\}$  from (5) is as  $\overline{|C_u|} \sim \sqrt{\frac{w_U}{N_U}}$  and for mean value of a property described by operator X are as (putting below  $\langle X \rangle \equiv X_{SS} + 2\Re[X_{SU}] + X_{UU}$ ):

$$X_{SS} = \langle \Psi_S | X | \Psi_S \rangle \sim N_S \cdot (1 - w_S) \cdot \overline{\langle s' | \mathbf{X} | s \rangle}, \tag{6}$$

$$X_{SU} = \langle \Psi_S | X | \Psi_U \rangle \sim \sqrt{N_U} \cdot \sqrt{N_S w_U (1 - w_U)} \cdot \overline{\langle s | \mathbf{X} | u \rangle} , \qquad (7)$$

$$X_{UU} = \langle \Psi_U | X | \Psi_U \rangle \sim N_U \cdot w_U \cdot \overline{\langle u' | \mathbf{X} | u \rangle} , \qquad (8)$$

where  $|s, u\rangle$  stands for  $|\Phi_{s,u}\rangle$ . The problem is that  $\langle \mathbf{X} \rangle$  can be changed dramatically with increasing  $N_U$  if the criteria of configuration selection for  $\{\Phi_s\}$ do not reflect appropriately the structure of contributions to the property determined by the speed of convergence of  $\overline{\langle s, u' | \mathbf{X} | u \rangle} \to 0$  when  $N_U \to \infty$ .

#### The PT2/CI method

The Hilbert space, where the many-electron equation

$$\mathbf{H}|\Psi\rangle = E|\Psi\rangle$$
 (14)

is defined, is partitioned into subspaces  $\mathcal{P} \& \mathcal{Q}$ . The corresponding projection operators,  $\mathbf{P} \& \mathbf{Q}$ , satisfy the relation  $\mathbf{P}+\mathbf{Q}=\mathbf{1}$ .  $\mathbf{P}$  is defined as the projector on the states of an atom having completely occupied core shells. Write

$$\mathbf{H} = \mathbf{P}\mathbf{H}\mathbf{P} + \mathbf{P}\mathbf{H}\mathbf{Q} + \mathbf{Q}\mathbf{H}\mathbf{P} + \mathbf{Q}\mathbf{H}\mathbf{Q} ,$$
  
$$|\Psi\rangle = \mathbf{P}|\Psi\rangle + \mathbf{Q}|\Psi\rangle \equiv |\phi\rangle + |\chi\rangle .$$
(15)

Accounting for  $\mathcal Q$  leads to the CI equation on the model space  $\mathcal P$ 

$$(\mathbf{PHP} + \boldsymbol{\Sigma}(E))|\phi\rangle = E|\phi\rangle , \qquad (16)$$

where

$$\Sigma(E) = (\mathbf{PHQ}) \frac{1}{E - \mathbf{QHQ}} (\mathbf{QHP}) .$$
(17)

### The PT2/CI method (cont.)

The  $\Sigma(E)$  operator is calculated by diagrammatic techniques within PT2 with some approximation for E, then Eq. (16) is solved by the CI method. The basis sets used for calculating  $\Sigma(E)$  and solving Eq. (16) need not be identical.

| Parameters of the spin-rota                             | ational | Hami                        | ltonian f                                            | or 1/1               | YbF.        |
|---------------------------------------------------------|---------|-----------------------------|------------------------------------------------------|----------------------|-------------|
|                                                         | A = (A  | $A_{\parallel}+2A_{\perp})$ | /3; $A_{\rm d} =$                                    | $(A_{\parallel} - A$ | )/3         |
|                                                         | A       | $A_{\rm d}$                 | $W_d$                                                | $W_{\rm A}$          | $W_{\rm S}$ |
| Method                                                  | (MHz)   | (MHz)                       | $\left(10^{24} \frac{\text{Hz}}{\text{e-cm}}\right)$ | (Hz)                 | (kHz)       |
| GRECP/RASSCF <sup>a,b</sup>                             | 4854    | 60                          | -9.1                                                 | 486                  | -33         |
| Semiemp. <sup>c</sup> (with $4f$ -hole correction)      | )       |                             | -12.6                                                |                      | -43         |
| DF+CP <sup>a</sup> (Quiney <i>et al.</i> ) <sup>d</sup> | 7865    | 60                          | -12.0                                                | 620                  | -42         |
| Unrestricted DF (Parpia) <sup>e</sup>                   |         |                             | -12.03                                               |                      | -44         |
| GRECP/RASSCF/EO f                                       | 7842    | 79                          | -12.06                                               | 634                  |             |
| (with $4f$ -hole correction)                            | (7839)  | (94)                        |                                                      |                      |             |
| GRECP/RCC-SD <sup>g</sup> (4 $f$ correlated)            | 7492    | 109                         | -11.61                                               |                      |             |
| Experiment <sup>h</sup>                                 | 7617    | 102                         |                                                      |                      |             |

<sup>a</sup> RASSCF is the Restricted Active Space SCF; DF stands for the Dirac-Fock;

EO stands for the Effective Operator technique; CP is Core Polarization;

<sup>b</sup> A.V.Titov, N.S.Mosyagin, & V.F.Ezhov, *PRL* 77, 5346 (1996).

<sup>c</sup> M.G.Kozlov, JPB 30, L607 (1997).

- <sup>d</sup> H.M.Quiney, H.Skaane, & I.P.Grant, JPB 31, L85 (1998).
- <sup>e</sup> F.A.Parpia, JPB 31, 1409 (1998).

<sup>f</sup> N.S.Mosyagin, M.G.Kozlov, & A.V.Titov, *JPB* **31**, L763 (1998).

<sup>g</sup> N.S.Mosyagin *et al.*, unpublished data with small basis set (2002).

<sup>h</sup> L.B.Knight, Jr. & W.Weltner, Jr., *JCP* 53, 4111 (1970).

## The PT2/CI method (cont.)

#### Advantages:

- ★ relative simplicity of the method, good convergence;
- conomical treatment of core-valence correlations and good description of valence correlations for a group of states.

#### Disadvantages:

- fast growth of computational expenses with enlarging one-electron basis set for valence electrons;
- lost of accuracy when describing core-valence correlations with small gap between core and valence shells.

#### The Coupled-Cluster Approaches

According to decomposition  $\mathbf{H} = \mathbf{H}^{[0]} + \mathbf{V}$ ;  $\mathbf{H}^{[0]} |\Phi_m\rangle = E_m^{[0]} |\Phi_m\rangle$ ;  $\mathbf{V} \equiv \mathbf{V}^{\text{corr}} + \mathbf{H}^{\text{SO}}$ , the complete space of  $\{\Phi_m\}$  is divided into two subspaces:

- $\mathcal{M}_0$ , model space, consists of small number of the most important configurations  $\{\Phi_m\}_{m=1}^{N_M}$  to describe *static* and other *nondynamic* correlations, which are taken into account exactly on  $\mathcal{M}_0$ ;
- $\mathcal{M}_0^{\perp}$ , rest of space (usually very large), is included <u>approximately</u> to account for *dynamic correlations*.

The eigenstates of interest are presented as

$$|\Psi_n\rangle = \sum_{m=1}^{N_M} C_{mn} \exp(\mathbf{S}^{\{m\}}) |\Phi_m\rangle , \qquad (25)$$

where  $\mathbf{S}^{\{m\}} \equiv \mathbf{S}_1^{\{m\}} + \mathbf{S}_2^{\{m\}} + \dots$  is the *cluster operator* for the  $\Phi_m$  state:

$$\begin{cases} \mathbf{S}_{1}^{\{m\}} = \sum_{a,b} s_{a,b}^{\{m\}} \mathbf{a}_{a}^{+} \mathbf{a}_{b} ,\\ \mathbf{S}_{2}^{\{m\}} = \frac{1}{2} \sum_{ab,cd} s_{ab,cd}^{\{m\}} \mathbf{a}_{a}^{+} \mathbf{a}_{b}^{+} \mathbf{a}_{d} \mathbf{a}_{c} ,\\ \cdots \end{cases}$$
(26)

#### Solution of Coupled-Cluster equations:

The cluster amplitudes  $\{s_{a,b}^{\{m\}}, s_{ab,cd}^{\{m\}}, \ldots\}$  are evaluated solving Bloch equations:

UHU = HU , 
$$U \equiv \sum_{m=1}^{N_M} \exp(\mathbf{S}^{\{m\}}) |\Phi_m\rangle \langle \Phi_m|$$
 . (27)

The coefficients  $C_{mn}$  and <u>final</u> energies  $E_n$  are obtained from diagonalization of the *effective Hamiltonian*  $\mathbf{H}^{\text{eff}}$  on the model space:

$$\mathbf{H}^{\text{eff}} \sum_{m=1}^{N_M} C_{mn} |\Phi_m\rangle = E_n \sum_{m=1}^{N_M} C_{mn} |\Phi_m\rangle , \qquad (28)$$

$$\mathbf{H}_{nm}^{\text{eff}} \equiv \langle \Phi_n | [\mathbf{H}_{\mathcal{N}} \exp(\mathbf{S}^{\{m\}})]_{\mathcal{C}} | \Phi_m \rangle .$$
<sup>(29)</sup>

#### Three basic Coupled Cluster categories:

- One-state or state-selective (N<sub>M</sub>=1);
- \* Fock-space or valence universal methods  $(\mathbf{S}_l^{\{m\}} \equiv \mathbf{S}_l^{\{1\}}, m=2, \dots, N_M);$
- Hilbert-space or state-universal approaches  $(N_M \ge 2)$ .

#### The Coupled-Cluster Approaches (cont.)

#### Advantages:

- ★ It is the size-extensive method, i.e. the energy of the system is scaled properly with increase in the number of electrons (whereas the CI method is not sizeextensive in general).
- \* The CC-SD method takes into account the contributions not only from the determinants obtained from the model space by applying the  $(1+T_1^{(m)}+T_2^{(m)})$  operator but also approximately from all the rest determinants (whereas the CI method with the same number of unknown coefficients does not).
- ★ The CC method is one of the best methods for accounting the dynamic correlation (that is the most serious drawback of linear CI approaches).

#### The Coupled-Cluster Approaches (cont.)

#### Disadvantages:

- The model space is usually small by size. Otherwise, intruder states (i.e. such states from the M<sup>1</sup><sub>0</sub> subspace which are lying within the M<sub>0</sub> subspace energy span) destroy the convergence of the CC iterations. Serious effort is yet required to overcome this problem in general.
- The effective Hamiltonian is usually non-Hermitian and the CC equations are nonlinear that seriously complicate their solution. This is a nonvariational method, i.e. the CC energy is not an upper bound to the exact energy of the system (whereas the CI energy is).
- Calculation of reduced density matrices (and, therefore, properties other than spectroscopic) is a complicated problem for the exponential WF ansatz.

#### P,T-odd interactions in TIF:

The effective Hamiltonian with the TI nucleus EDM in TIF is

$$H^{\text{eff}} = (d^V + d^M)\vec{\sigma}_N \cdot \vec{\lambda} , \qquad (18)$$

where  $\vec{\sigma}_N$  is a unit vector parallel to the spin of the TI nucleus  $\vec{I}$ ,  $\vec{\lambda}$  is the unit vector along z (from TI to F),  $d^V \& d^M$  are volume and magnetic constants [Schiff 1963].

#### Volume effect:

$$d^{V} = 6SX = (-d_{p}R + Q)X , \qquad (19)$$

S is the nuclear Schiff moment,  $d_p$  is the proton EDM,

$$X = \frac{2\pi}{3} \left[ \frac{\partial}{\partial z} \rho_{\psi}(\vec{r}) \right]_{x,y,z=0} , \qquad (20)$$

 $\rho_{\psi}(\vec{r})$  is the electronic density calculated from the WF  $\psi$ ;

R and Q are factors determined by the *nuclear* structure of <sup>205</sup>TI:

$$R = \langle \psi_N(\mathbf{r_n}) | \sum_n (q_n/Z - \delta_{n,3s}) r_n^2 | \psi_N(\mathbf{r_n}) \rangle ,$$

$$Q = \left[ 3/5 \langle \psi_N(\mathbf{r_n}) | \sum_n (q_n \mathbf{r}_n) | \psi_N(\mathbf{r_n}) \rangle - 1/Z \langle \psi_N(\mathbf{r_n}) | \sum_n (q_n r_n^2) | \psi_N(\mathbf{r_n}) \rangle \times \langle \psi_N(\mathbf{r_n}) | \sum_n (q_n \mathbf{r_n}) / r_n^2 | \psi_N(\mathbf{r_n}) \rangle \right]_{\vec{I}},$$

where  $\psi_N(\mathbf{r_n})$  is nuclear WF.

#### Magnetic effect:

$$d^{M} = 2\sqrt{2}(d_{p} + d_{N})\left(\frac{\mu}{Z} + \frac{1}{2mc}\right)M , \qquad (23)$$

where  $d_N$  is the nuclear EDM arising due to P,T-odd nuclear forces;  $\mu$ , m & Z are the magnetic moment, mass & charge of TI nucleus,

$$M = \frac{1}{\sqrt{2}} \langle \psi | \sum_{i} \left( \frac{\vec{\alpha}_{i} \times \vec{\mathbf{l}}_{i}}{r_{i}^{3}} \right)_{z} | \psi \rangle , \qquad (24)$$

 $\vec{\mathbf{l}_i}$  is the orbital momentum for electron *i*;  $\vec{\alpha}_i$  are its Dirac matrices.

# The parameters X and M (in a.u.) for the ground state of <sup>205</sup>TIF in Dirac-Fock (DF)<sup>1,2</sup> and GRECP/RCC<sup>3</sup> calculations.

|                                 | $R_e = 2.0844$ Å    |      | R = 2.1  Å |                      | 4    |
|---------------------------------|---------------------|------|------------|----------------------|------|
| Expansion                       | $s, p \ s, p, d, f$ | s, p | s, p       | s,p,d,f              | s, p |
| Shells : main contr.            | M                   | X    | M          |                      | X    |
|                                 |                     |      |            |                      |      |
| DF <sup>1</sup> TI:(28,28,12,8) | 15.61               | 7743 |            |                      |      |
| DF <sup>2</sup> TI:(28,28,14,8) |                     |      |            | $13.62^{\mathrm{a}}$ | 8089 |
| TI:(34,34,16,9)                 |                     |      |            | $13.63^{\mathrm{a}}$ | 8747 |
| GRECP/RCC-S                     | 16.12 13.84         | 9813 | 16.02      | 13.82                | 9726 |
| GRECP/RCC-SD                    | 11.50               | 7635 |            |                      |      |

 $^{\rm a}M$  is calculated in [2] with using two-center molecular spinors corresponding to infinite value of  $L_{\rm max}.$ 

<sup>1</sup>F.A.Parpia, JPB 30, 3983 (1997).

<sup>2</sup>H.M.Quiney, J.K.Laerdahl, K.Faegri Jr., T.Saue, *PRA* 57, 920 (1998).

<sup>3</sup>A.N.Petrov, N.S.Mosyagin, T.A.Isaev et al., PRL 88, 073001 (2002).

# PbO\* is a Novel System for Measuring Electron EDM |d<sub>e</sub>|

- a(1) has very small Ω-doublet splitting
   ⇒ complete polarization with small fields (>15 V/cm)
   equivalent to E ~ >10<sup>10</sup> V/cm on an atom!
- PbO is thermodynamically stable

   a(1) populated via laser excitation
   ⇒ can work in vapor cell.

**MUCH** larger density than beam:

**PbO Cell (Yale):TI Beam (Berkeley):** $N = nV \sim 10^{16}$  $N = nV \sim 10^{8}$ 

# Errors in all-electron transition energies of the Pb atom obtained by the RCC-SD and PT2/CI methods for states with the 6s<sup>2</sup>6p<sup>2</sup> configuration.

|                 | Exper.         |       | Errors <sup>a</sup> in transition energies (in $cm^{-1}$ ) |      |      |       |      |       |      |
|-----------------|----------------|-------|------------------------------------------------------------|------|------|-------|------|-------|------|
| Term            | transition     |       | RCC-SD                                                     |      |      | CI    | F    | PT2/C |      |
|                 | energies       |       | Number of correlated electrons                             |      |      |       |      |       |      |
|                 | $(in cm^{-1})$ | 4     | 4 14 22 36 4 14 22                                         |      |      |       | 36   |       |      |
| $^{3}P_{0}$     | 0              | 0     | 0                                                          | 0    | 0    | 0     | 0    | 0     | 0    |
| ${}^{3}\!P_{1}$ | 7819           | -1161 | -630                                                       | -450 | -414 | -807  | -535 | -393  | -365 |
| ${}^{3}\!P_{2}$ | 10650          | -1229 | -539                                                       | -364 | -320 | -752  | -428 | -294  | -282 |
| $^{1}D_{2}$     | 21457          | -2263 | -963                                                       | -618 | -530 | -1707 | -849 | -573  | -402 |
| ${}^{1}\!S_{0}$ | 29466          | -1362 | -70                                                        | 199  | 291  | -1553 | -270 | -33   | 90   |
| Max. error      |                | 2263  | 963                                                        | 817  | 821  | 1707  | 849  | 573   | 492  |
| Av. error       |                | 945   | 497                                                        | 417  | 411  | 843   | 392  | 301   | 270  |

<sup>a</sup> Errors are taken as differences between calculated and experimental values.

# Contributions from triple and quadruple CC amplitudes to total energies of the Pb terms and errors for the VCIC-corrected transition energies.

| Term                                                      | Basis set Errors in            |                       |                       |                                |     |     |
|-----------------------------------------------------------|--------------------------------|-----------------------|-----------------------|--------------------------------|-----|-----|
| (Leading                                                  | [3,5]                          | [3,5,3]               | [3,5,3,2]             | transition energies $^{\rm c}$ |     |     |
| configuration)                                            | $\Delta^{\mathrm{a}}$          | $\Delta^{\mathbf{a}}$ | $\Delta^{\mathbf{a}}$ | (All values in $cm^{-1}$ )     |     |     |
|                                                           | Number of correlated electrons |                       |                       |                                |     |     |
|                                                           | 4                              | 4                     | 4                     | 14                             | 22  | 36  |
| ${}^{3}P_{0} (6s_{1/2}^{2}6p_{1/2}^{2})$                  | -334                           | -690                  | -586                  | 0                              | 0   | 0   |
| ${}^{3}\!P_{1} (6s^{2}_{1/2}6p^{1}_{1/2}6p^{1}_{3/2})$    | -120                           | -389                  | -232                  | -276                           | -96 | -60 |
| ${}^{3}\!P_{2} (6s^{2'}_{1/2}6p^{1'}_{1/2}6p^{1'}_{3/2})$ | -104                           | -242                  | -109                  | -62                            | 113 | 157 |
| ${}^{1}\!D_{2} (6s^{2}_{1/2}6p^{2}_{3/2})$                | -11                            | 47                    | -30                   | -407                           | -62 | 26  |
| ${}^{1}\!S_0 (6s_{1/2}^2 6p_{3/2}^2)$                     | -412                           | -680                  | -777                  | -261                           | 8   | 100 |
| Max. error                                                | 412                            | 737                   | 777                   | 407                            | 209 | 217 |
| Aver. error                                               | 196 <sup>ь</sup>               | 410 <sup>b</sup>      | 347 <sup>ь</sup>      | 206                            | 88  | 106 |

<sup>a</sup>  $\Delta_i = E_i^{CI} - E_i^{RCC}$ . <sup>b</sup>  $\Delta_{av} = \frac{1}{5} \sum_{i=1}^{5} |E_i^{CI} - E_i^{RCC}|$ . <sup>c</sup> Differences between calculated (RCC-SD + VCIC) and experimental data.

### Spin-Orbit Conguration Interaction

Write a Hamiltonian  $\mathbf H$  for a molecule as

$$\mathbf{H} = \mathbf{H}^{[0]} + \mathbf{V}^{\text{corr}} + \mathbf{H}^{\text{SO}} , \qquad (30)$$

where  $\mathbf{H}^{[0]}$  is an unperturbed spin-independent Hamiltonian,  $\mathbf{V}^{corr}$  is a twoelectron correlation operator, and  $\mathbf{H}^{SO}$  is a one-electron spin-orbit operator.

$$\mathbf{H}^{[0]} \Phi_I^{(\mathbf{n})\Lambda \mathbf{S}} = E_I^{(\mathbf{n})\Lambda \mathbf{S}} \Phi_I^{(\mathbf{n})\Lambda \mathbf{S}} , \qquad (31)$$

where  $n=1, 2, \ldots$  numerates groups of states by the excitation level with respect to a set of the most important (*reference* or *main*) configurations,  $\left\{\Phi_{I}^{(0)\Lambda S}\right\}$ .

Two main approaches: "Conventional CI"  $(\langle \Phi_I^{(n)\Lambda S} | \mathbf{H} | \Phi_J^{(n)\Lambda'S'} \rangle$  are saved in memory) and "Direct CI" (the above matrix elements are calculated <u>only</u> as required).

The singly- and doubly-excited configurations,  $\{\Phi_I^{(1,2)MS}\}$ , can be *completely* included to the final CI calculations or *selected* ("Table CI") due to some criteria.

#### The SO-CI computational scheme:

The Spin-Orbit MultiReference single- and Double-excitation CI method employing the point double-group symmetry consists of the following stages:

- SCF (MCSCF) calculation with the spin-Averaged RECP part, U<sup>AREP</sup>⊂H<sup>[0]</sup> is performed; the obtained spin-orbitals are used for generating the Spin- and space-symmetry adapted many-electron Functions (SAFs) {Φ<sup>(0,1,2)AS</sup><sub>J</sub>;
- 2. selection of the reference configurations (Mains)  $\{\Phi_J^{(0)\Lambda S}\}\$  and diagonalization of  $\mathbf{H} \equiv \mathbf{H}^{[0]} + \mathbf{V}^{corr} + \mathbf{H}^{S0}$  on them for constructing the starting approximations for required states,  $\Psi_I^{(0)} = \Sigma_{\Lambda S,J} C_{IJ}^{(0)\Lambda S} \Phi_J^{(0)\Lambda S}$ ,  $E_I^{(0)} = \langle \Psi_I^{(0)} | \mathbf{H} | \Psi_I^{(0)} \rangle$ ;
- 3. singly- (n=1) and doubly-excited (n=2) SAFs  $\Phi_J^{(n)\Lambda S}$  (with respect to Mains) are selected by PT2 with thresholds  $T_1 \& T_2$  ( $\mathbf{H}^{[0]} | \Phi_J^{(n)\Lambda S} \rangle = E_J^{(n)\Lambda S} | \Phi_J^{(n)\Lambda S} \rangle$ ):

$$\delta E_J^{(\mathbf{n})\Lambda S}(I) = \frac{|\langle \Phi_J^{(\mathbf{n})\Lambda S} | \mathbf{V}^{\text{corr}} + \mathbf{H}^{S0} | \Psi_I^{(0)} \rangle|^2}{E_J^{(\mathbf{n})\Lambda S} - E_I^{(0)}} \ge T_{1,2} , \quad (32)$$

#### Perturbative corrections to CI:

- 4. a required set of low-lying solutions,  $\Psi_I^{T_k}$ , of Hamiltonian H on the space of the selected SAFs is obtained using iterative Davidson procedure;
- 5. accounting for the linear correction on zero threshold, T=0, for I-th root:

$$E_I^{T=0} = E_I^{T_k} + \lambda P_I^{T_k} \quad \Rightarrow \quad \lambda = -(P_I^{T_1} - P_I^{T_2})/(E_I^{T_1} - E_I^{T_2}) , \quad (33)$$

where k = 1, 2 and

$$E_I^{T_k} = \langle \Psi_I^{T_k} | \mathbf{H} | \Psi_I^{T_k} \rangle , \qquad P_I^{T_k} = \sum_{(\mathbf{n}, \mathbf{\Lambda S}, J): \ \delta E_J^{(\mathbf{n})\mathbf{\Lambda S}}(I) < T_k} \delta E_J^{(\mathbf{n})\mathbf{\Lambda S}}(I) ,$$

i.e. multiindex  $(n, \Lambda S, J)$  runs only over *unselected* SAFs with respect to  $T_k$ ;

 accounting for triple and quadruple excitations (generalized Davidson or Full-Cl correction) for approximate calculating the Full-Cl energies:

$$\Delta E_I^{TQ} \approx \Delta E_I^{SD} (1 - |c_I^{(0)}|^2) , \quad \Delta E_I^{SD} = E_I^{T=0} - E_I^{(0)} , \quad (34)$$

where  $|c_I^{(0)}|^2$  is the weight of  $\Psi_I^{(0)}$  in  $\Psi_I^{T_{\min}}$ .

### Spin-Orbit Conguration Interaction (cont.)

#### Advantages:

- ★ simplicity of the method, there are no problems with the convergence independently of the numbers of roots and open shells;
- ★ well describes "static" and other "nondynamic" (valence) correlations.

#### Disadvantages:

- it is badly working for large number of correlated electrons when (semiempirical) linear T=0 and/or generalized Davidson (Full CI or FCI) correction on unselected configurations are usually large;
- "thrill of points" on the potential curves as a result of the configuration selection by some thresholds;
- though, in principle, the corrections of T=0 and FCI types can be used when calculating properties other than spectroscopic; their justification is not as straightforward as in calculating energies.

# **Calculation of PbO\*:** Starting point

PbO\* crude model of *a(1)*: two valence electrons, one is excited both nominally in π-orbitals: *no s-wave component*

Pb: [Xe]  $5s^25p^65d^{10}$   $6s^26p^2$ ; O:  $1s^2$   $2s^22p^4$ . [ outer core ] [valence ] [OC] [ V ]

- $\Rightarrow$  any admixture of s-wave due to relativistic & correlation effects can dramatically influence on the calculated HFS and PNC values.
- $\Rightarrow$  Accurate calculation of electronic structure both in the valence and core regions of PbO is required:
- ⇒ Combination of SO-CI (*nondynamic* or V correlations) & RCC-SD (*dynamic* or OC-V correlations) is applied:

W = W [30-el. RCC-SD] - W [10-el. RCC-SD] + W [10-el. SO-CI]

Pb:[4s7p5d3f] + O:[4s3p2d1f] :<Basis sets>: Pb:[5s7p4d2f] + O:[4s3p2d1f]

Calculated parameters A (in MHz) and  $W_d$  (in  $10^{24}$  Hz/( $e \cdot$ cm)) Experiment: A = -4113 MHz for a(1);  $A = 5000 \pm 200$  MHz for B(1)

| State         | $a(1)^{-3}\Sigma^{+}$ | $\sigma_{1}^{2}\sigma_{2}^{2}\sigma_{3}^{2}\pi_{1}^{3}\pi_{2}^{1}$ | $B(1)^{-3}\Pi$ | $\boldsymbol{\sigma}_{1}^{2}\boldsymbol{\sigma}_{2}^{2}\boldsymbol{\sigma}_{3}^{1}\boldsymbol{\pi}_{1}^{4}\boldsymbol{\pi}_{2}^{1}$ |
|---------------|-----------------------|--------------------------------------------------------------------|----------------|-------------------------------------------------------------------------------------------------------------------------------------|
| Parameters    |                       | $W_{d}$                                                            | A              | $W_{d}$                                                                                                                             |
|               | Internucl             | ear distance R =                                                   | 3.8 a.u.       |                                                                                                                                     |
| 10e-RCC-SD    | -2635                 | -3.05                                                              | 3878           | -10.10                                                                                                                              |
| 30e-RCC-SD    | -2698                 | -4.10                                                              | 4081           | -9.70                                                                                                                               |
| Outecore      | -63                   | -1.05                                                              | 203            | 0.40                                                                                                                                |
| 10e-CI        | -3446                 | -4.13                                                              | 4582           | -10.64                                                                                                                              |
| FINAL         | -3509                 | -5.18                                                              | 4785           | -10.24                                                                                                                              |
|               | Internucl             | ear distance R =                                                   | 4.0 a.u.       |                                                                                                                                     |
| <u>10e-CI</u> | -3689                 | -4.81                                                              | 4762           | -7.18                                                                                                                               |
| FINAL         | -3752                 | -5.86                                                              | 4965           | -6.78                                                                                                                               |

A (in MHz) and  $W_d$  (in  $10^{24}$  Hz/( $e \cdot cm$ )) calculated by CI & RCC with different thresholds (T).

| State                | $a(1)$ ${}^{3}\Sigma^{+}$ $\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{2}\sigma_{1}^{$ | $\sigma_2^2 \sigma_3^2 \pi_1^3 \pi_2^1$ | $B(1)^{3}\Pi \sigma$ | $\sigma_1^2 \sigma_2^2 \sigma_3^1 \pi_1^4 \pi_2^1$ |  |  |  |
|----------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|----------------------|----------------------------------------------------|--|--|--|
| Parameters           | A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $W_{d}$                                 | A                    | $W_{d}$                                            |  |  |  |
| T (number of SAFs)   | Internuclear distance R=4.0 a.u.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         |                      |                                                    |  |  |  |
| Reference ( 2 500)   | -2025                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -0.72                                   | 4150                 | -6.22                                              |  |  |  |
| T=0.1 (120 000)      | -3124                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -2.44                                   | 4357                 | -7.35                                              |  |  |  |
| T=0.01 ( 500 000)    | -3458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -3.61                                   | 4590                 | -6.94                                              |  |  |  |
| T=0.0025 (1 100 000) | -3536                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.08                                   | 4662                 | -7.02                                              |  |  |  |
| T=0.001 (2 000 000)  | -3571                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.31                                   | 4692                 | -7.07                                              |  |  |  |
| T=0 (175 000 000)    | -3625                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.65                                   | 4739                 | -7.15                                              |  |  |  |
| <u>T=0 + FCI</u>     | -3689                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -4.81                                   | 4762                 | -7.18                                              |  |  |  |

# Calculation of E<sub>int</sub> in PbO\*: Results

• Semi-empirical model of wave functions using experimental data to constrain partial waves near Pb [M.Kozlov and D.DeMille, PRL 89, 133001 (2002)]

 $\Rightarrow$  E<sub>int</sub> > 5×10<sup>10</sup> V/cm!

• *Ab initio* RCCSD + SODCI calculations of QChem PNPI RCCSD: [T.Isaev *et al.*, PRA **69**, 030501(R) (2004)] SODCI: [A.Petrov *et al.*, arXiv: physics/0409045; PRA (2005)]

 $\Rightarrow$  E<sub>int</sub> ~ 2.5×10<sup>10</sup> V/cm.

**HI**<sup>+</sup>: Calculated  $E_{\text{eff}} \equiv W_d |\Omega|$  (in  $10^{24} \text{ Hz/}(e \cdot \text{cm})$ ),  $|\Omega| = 3/2$ ,  $A_{\parallel}$  and quadrupole HFS constant  $eQq_0$  (in MHz) for the ground state  $X^2\Pi_{3/2}$  of H<sup>127</sup>I<sup>+</sup>.  $A_{\parallel}^{\text{expt}} = 1021 \text{ MHz}$ ;  $eQq_0^{\text{expt}} = -712.6 \text{ MHz}$  (Q = -710(10) mbarn). "SAFs" are spin-adapted functions.

| Method     |                           | $A_{\parallel}$ | $eQq_0$ | $W_d  \Omega $ |
|------------|---------------------------|-----------------|---------|----------------|
| "ionic" DI | HF approx. <sup>1</sup>   |                 |         | -0.09          |
| "covalent' | ' CI approx. $^1$         |                 |         | -0.49          |
| RCC-S      | $\gamma \ electrons \ ^2$ | 863             | -719    | 0.206          |
| RCC-SD     |                           | 881             | -708    | 0.347          |
| SODCI      | 1911282 SAFs              | 892             | -709    | 0.336          |
| RCC-S      | $25 \ electrons \ ^2$     | 906             | -807    | 0.226          |
| RCC-SD     |                           | 962             | -752    | 0.345          |
| SODCI      | 12678133 SAFs             | 968             | -745    | 0.336          |

<sup>1</sup>B.Ravaine, S.G.Porsev, & A.Derevianko, *PRL* 94, 013001 (2005).

<sup>2</sup>T.A.Isaev, N.S.Mosyagin, A.N.Petrov, & A.V.Titov, arXiv: physics/0412177.

### **Concluding remarks** (core properties):

- ⇒ High-accuracy calculations of heavy-atom systems are of primary interest for modern (planned) experiments to search for PNC effects.
- ⇒ Up to now, all the most precise calculations of polar heavy-atom diatomics of interest are performed by the GRECP / NOCR approach.
- ⇒ Accuracy is limited by current possibilities of correlation methods and not by the finite basis set, GRECP and NOCR approximations.
- ⇒ The two-step method has better flexibility than the four-component approaches and good prospects for further improvement of accuracy.
- ⇒ Extension of the method to study more complicated systems (liquids etc.) is planned; simulation of environment by GRECPs is possible. Applicability to a multitude of other properties is straightforward.
- ⇒ Further development of accurate effective Hamiltonians, correlation methods and new schemes of the basis set generation is required:
- ⇒ Correlated GRECPs and schemes of correlated restoration can dramatically reduce the computational efforts in prospect.

# Concluding remarks (valence properties):

- Calculations with "chemical accuracy" are now accessible for variety of properties in heavy-atom molecules by different ways.
- Computational accuracy can be higher than experimental one; the properties not attainable to experimental research can be reliably calculated.
- There are good prospects for further improvement of accuracy. Studying more complicated systems (molecules and clusters) and new phenomena is possible. As a result, new areas can be a subject of further both theoretical and experimental research.
- RECPs provide best flexibility in such calculations and sufficient accuracy.

