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Abstract. Transition energy calculations for low-lying states of Pb and Pb2+ by the four-
component versions of the Fock-space RCC-SD and PT2/CI methods are reported. Contributions
of valence and core electron correlation are studied in all-electron calculations with the Dirac–
Coulomb Hamiltonian. The accuracy of our generalized RECP and the RECP of Christiansen and
co-workers is tested. The consideration of only one- and two-body amplitudes for valence electrons
in the RCC method for Pb is shown not to be sufficient to reproduce valence excitations within
100–300 cm−1. Correcting RCC-SD results by estimated contributions of triple and quadruple
excitations yields an accuracy of about 200 cm−1.

1. Introduction

Interest in highly accurate atomic and molecular electronic structure calculations has grown
significantly in the last decade, brought about by progress in experimental techniques and in
computational methods and capabilities. The Fock-space relativistic coupled-cluster (RCC)
method [1–3] has proved to be very economical and reliable within its domain of applicability.
It has been applied successfully to calculations of many heavy and super-heavy elements [4, 5]
and to several heavy-atom molecules [6, 7].

A combined method of second-order many-body perturbation theory (MBPT2 or PT2)
and configuration interaction (CI) [8, 9] was developed recently. In this PT2/CI method,
correlation between core and valence electrons is considered by MBPT2, constructing an
effective Hamiltonian for valence electrons. The resulting effective Hamiltonian is then used
in CI calculations to take into account correlation between valence electrons. The method has
been applied to the calculation of excitation spectra and physical properties in heavy atoms
[10] and of P, T-odd effects in the BaF and YbF molecules [11].

These methods were shown to be applicable to calculation of atomic transition energies
with an accuracy of a few hundred wavenumbers on computers of moderate power, and are
therefore promising for accurate studies of heavy-atom molecules. To reduce the computational
effort, calculations on such molecules are usually performed with some kind of relativistic
effective core potentials (RECPs), and one of the goals of this paper is to estimate the accuracy
and reliability of different RECPs before using them in molecular calculations. For low-lying
states of the lead atom (with the valence region including two electrons in the open 6p shell and
two electrons in the closed 6s shell), relativistic effects are as important as correlation. Pb is
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therefore a good test case for methods devised for calculating heavy-atom molecules. Finally,
electronic structure calculations on the Pb atom and its ions are also useful for selecting an
atomic basis set and determining the number of outer core shells which should be correlated
in subsequent calculations of Pb-containing systems to obtain the desired accuracy.

2. Methods

A detailed description of the RCC and PT2/CI methods may be found in [1, 2, 12] and in
[8, 9, 13], respectively. The theory of generalized RECP (GRECP) and other shape-consistent
RECPs (with orbitals smoothed in the atomic core region) is presented in [14]. Only a brief
review of these methods is given below.

2.1. Relativistic coupled-cluster method

The sectors of the Fock space with m holes and n particles with respect to some reference
closed-shell state are denoted by (m, n). The wavefunction in the Fock-space coupled-cluster
(CC) method is first calculated in the (0, 0) sector. It is presented in the form

|�〉 = eT |�〉
where eT is the exponential wave operator and |�〉 is a zero-order function of some reference
closed-shell state. Correlation effects for this state are taken into account by the operator T ,
which is usually truncated at some excitation level (thus, only one- and two-body amplitudes
are included in the RCC method with single and double excitations, or RCC-SD). At the next
step, the number of electrons in the system is increased or decreased by one electron (sectors
(0, 1) and (1, 0), respectively) and the system is ‘recorrelated’

|� j 〉 = eT
∑

i

Ci jb
+
i |�〉

where b+
i is the creation operator for a hole or particle in the i th valence one-electron state.

Because the amplitudes calculated in the (0, 0) sector are not varied at this step, only a small
fraction of the cluster amplitudes is now calculated in the T operator. One more electron is
then added to or removed from the system, and the cluster amplitudes for low-lying states are
obtained for the systems of (N+2), N and (N−2) electrons (sectors (0, 2), (1, 1) and (2, 0)).
Spherical symmetry and the j j-coupling scheme are used, allowing analytic integration over
angular and spin variables, with considerable computational savings. The Fock-space scheme
used in this paper is

Pb3+ ← Pb2+ → Pb+ → Pb

↘ ↙
(Pb2+)∗

(1)

with electrons added in the 6p1/2 and 6p3/2 spinors and removed from the 6s1/2 spinor.

2.2. Combined PT2/CI method

The Hilbert space, where the many-electron equation

H|�〉 = E |�〉 (2)
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is defined, is partitioned into two subspaces, P and Q. The corresponding projection operators
P and Q satisfy the relation P + Q = 1. The operator P is defined as the projector on those
states of the atom in which the one-electron core states are always occupied. One may write

H = PHP + PHQ + QHP + QHQ

|�〉 = P |�〉 + Q|�〉 ≡ |φ〉 + |χ〉.
In the conventional CI calculation (in the model space defined by the projector P ) the equation
solved is

(PHP )|φCI〉 = ECI|φCI〉.
The solution of this equation differs from that of equation (2), because the Q subspace is not
taken into account. Accounting for Q leads to the CI equation

(PHP + Σ(E))|φ〉 = E |φ〉 (3)

where

Σ(E) = (PHQ)
1

E − QHQ
(QHP ).

The operator Σ(E) with the proper orbital choice may be written as

Σ(E) = P (V − V NPT )Q
1

E − QHQ
Q(V − V NPT )P (4)

where V is the two-electron Coulomb (electrostatic) interaction and V NPT is the Hartree–Fock
potential of NPT electrons. The value of NPT must satisfy the condition Nc � NPT � N ,
where Nc is the number of core electrons and N is the total number of electrons in the system.
The Σ(E) operator is calculated by standard diagrammatic techniques within the framework
of the Brillouin–Wigner PT2 with some approximation for E (the E values used here are
described in section 4.1 below), and equation (3) is then solved by the CI method. It should be
noted that the basis sets used for calculating the Σ(E) operator and for solving equation (3)
need not be identical.

2.3. Shape-consistent RECPs and GRECP

The Dirac–Coulomb (DC) or Dirac–Coulomb–Breit (DCB) Hamiltonian, H rel, is replaced in
RECP calculations by an effective Hamiltonian

Heff = Hnon-rel + U eff (5)

where Hnon-rel is the Schrödinger Hamiltonian written only for some (pseudo)valence electrons
and U eff is an RECP operator simulating interactions of the (pseudo)valence electrons with the
electrons excluded from the RECP calculations. Contrary to the four-component wavefunction
used in DC(B) calculations, the pseudo-wavefunction in the RECP case can be two- or one-
component.

In the shape-consistent RECP calculations, the radial oscillations of the valence spinors
are smoothed in the core region. The components of the effective potential, Unl j (r), are derived
by inversion of the non-relativistic-type Hartree–Fock equation in the j j-coupling scheme for
a ‘pseudo-atom’ with the core electrons removed,

Unl j (r) = ϕ̃−1
nl j (r)

[(
1

2

d2

dr2
+

1

r

d

dr
− l(l + 1)

2r2
+

Z∗

r
− J̃(r) + K̃(r) + εnl j

)
ϕ̃nl j (r)

+
∑
n′ 
=n

εn′nl j ϕ̃n′l j (r)

]
(6)
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where Z∗ = Z−Nc is the effective (nuclear and core) charge, J̃ and K̃ are the Coulomb and
exchange operators calculated with the pseudospinors ϕ̃nl j , εnl j are the one-electron energies
of the corresponding spinors, and εn′nl j are the off-diagonal Lagrange multipliers.

The principal features distinguishing the generalized RECP version used here from
conventional semilocal RECP versions are: (a) the GRECP generation scheme involves valence
(V) and outer core (OC) pseudospinors with the same angular (l) and total ( j) momenta; (b)
the GRECP operator includes non-local terms [15] in addition to the standard radially local
operator. The innermost outer core pseudospinors have nodeless radial functions, whereas the
valence pseudospinors have nodal radial parts. The problem of dividing by zero, which arises
for pseudospinors with nodes, is overcome by interpolating the corresponding potential in the
vicinity of the node. The expression for the GRECP operator is

UGRECP = Unv L J (r) +
L∑

l=0

l+1/2∑
j=|l−1/2|

[
Unvl j (r) − Unv L J (r)

]
Pl j

+
∑

nc

L∑
l=0

l+1/2∑
j=|l−1/2|

{[
Uncl j (r) − Unvl j (r)

]
P̃ncl j + P̃ncl j

[
Uncl j (r) − Unvl j (r)

]}

−
∑
nc,n′

c

L∑
l=0

l+1/2∑
j=|l−1/2|

P̃ncl j

[
Uncl j (r) + Un′

cl j (r)

2
− Unvl j (r)

]
P̃n′

cl j (7)

where

Pl j =
j∑

m j =− j

∣∣l jm j
〉〈

l jm j

∣∣

P̃ncl j =
j∑

m j =− j

∣∣ñcl jm j
〉〈

ñcl jm j

∣∣
∣∣l jm j

〉〈
l jm j

∣∣ is the projector on the two-component spin-angular function χl jm j ,∣∣ñcl jm j
〉〈

ñcl jm j

∣∣ is the projector on the outer core pseudospinor ϕ̃ncl jχl jm j , L is larger by
one than the highest orbital angular momentum of the inner core (removed) spinors, and
J = L + 1

2 . The first line in equation (7) presents the standard radially local RECP operator
URECP. In equation (5) and below U eff denotes either URECP or UGRECP, depending on the
RECP version used. As pointed out earlier [14, 16], the form (7) of the GRECP operator is
optimal for the calculation of states in which the occupation numbers of the outer core shells
are approximately the same as in the state used for the GRECP generation (i.e. the leading
configurations have no excitations from the outer core shells).

3. Generation and optimization of basis set

The basis set for all-electron and RECP calculations of Pb was largely generated by the
scheme suggested in [17]. Ideas taken from ANO [19] and correlation-consistent [20]
basis set generation schemes were also employed. Basis spinors were obtained from SCF
calculations (Dirac–Fock or Hartree–Fock with RECP) for different configurations of the
neutral Pb atom and its positive ions. We used the HFD code [21] for all-electron four-
component calculations and its modified version, HFJ [22], for two-component calculations
with RECPs. SCF calculations were first performed for the ground 6s2 state of the Pb2+ ion,
yielding the 1s1/2, . . . , 6s1/2 spinors. The 6p1/2,3/2 spinors were then obtained as solutions of
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the SCF equation for the state of Pb averaged over the non-relativistic [6s2]6p2 configuration.
The notation [6s2]6p2 indicates that all orbitals up to and including the orbital in square
brackets (6s in this case) are frozen after the SCF calculation of the relevant species (Pb2+

here).
The next stage consisted of a number of SCF calculations for neutral and a sequence of

ionized states of Pb with the configurations [6s26p1]7s1, [6sn]7s1 (n = 1, 2), [5dn]7s1 (n =
1, 2, . . . , 10), etc. The 7s spinors generated are thus localized in different spatial regions. A
sequence of basis sets is formed by adding one of these spinors to the initial basis set. The
added spinor is orthogonalized to the other spinors of the same symmetry in the basis, and
the Fock operator constructed for the 6s2 state is diagonalized in the basis obtained. The Pb
atom low-lying states of interest are then calculated by some correlation method (CI, PT2/CI
or RCC) for each basis set, and the basis for which an energy functional F(�E1, . . . , �EM)

is the largest is selected. �Ei � 0 is the lowering of the energy Ei of the i th state with respect
to the initial basis set, and M is the number of states considered. The same procedure is then
repeated for the pair of spinors 7p1/2 and 7p3/2, with the initial basis set taken from the previous
step. New functions are added in a similar fashion, until the functional F becomes smaller
than some threshold T . In [17] we used the functional

F(�E1, . . . , �EM) = M
max
i> j

|�Ei − �E j | (8)

here the average energy lowering for the states selected is used as the energy functional,

F(�E1, . . . , �EM) = 1

M

M∑
i

�Ei . (9)

The process of basis set generation is terminated when the energy functional goes below the
threshold T = 50 cm−1. In a more sophisticated treatment, the two functionals may be applied
consecutively in the basis set generation, with functional (9) used at the first stage. Such a
scheme may be more appropriate for generating basis sets to be used in subsequent molecular
calculations; an implementation is now in progress. Theoretical justification for the combined
selection scheme may be found in [23].

The resulting basis set, consisting of three s-spinors, five pairs of p-spinors, three pairs of d-
spinors and two pairs of f-spinors (denoted by [3, 5, 3, 2]), was used for valence CI calculations.
Different basis sets may be used to take account of the V–V and OC–V correlations in the

Table 1. Errors in all-electron transition energies of the Pb atom obtained by the RCC-SD and
PT2/CI methods for states with 6s26p2 configuration. All values are in cm−1.

Errorsa in transition energies
RCC-SD CI PT2/CI

Experimental
transition Number of correlated electrons

Term energies 4 14 22 36 4 14 22 36

3P0 0 0 0 0 0 0 0 0 0
3P1 7 819 −1161 −630 −450 −414 −807 −535 −393 −365
3P2 10 650 −1229 −539 −364 −320 −752 −428 −294 −282
1D2 21 457 −2263 −963 −618 −530 −1707 −849 −573 −402
1S0 29 466 −1362 −70 199 291 −1553 −270 −33 90

Max. error 2263 963 817 821 1707 849 573 492

Average error 945 497 417 411 843 392 301 270

a Errors were taken as differences between calculated values and experimental data (in column 2).
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PT2/CI calculations and, therefore, an optimal ‘double’ basis set for the PT2/CI calculations
was generated: the CI part of the basis set was kept unchanged, and the PT2 subset was obtained
by adding the spinors to the CI part by the procedure described above. The optimization was
performed for 36 correlated electrons (down to the 4f shell) and a ‘double’ PT2/CI basis set,
[7, 6, 6, 4, 4]/[3, 5, 3, 2], was generated.

We estimate the contributions of higher harmonics (functions with l > 4) in the energy
functional to be at most 100 cm−1†. The results of calculations with the basis sets generated
are presented in table 1 and discussed below. Although substantially more extensive basis
sets can be used in atomic calculations, different optimization procedures are studied in our
papers in order to minimize the atomic basis set size which provides a given (high) accuracy
in subsequent molecular calculations.

4. Results and discussion

Transition energies for the five lowest-lying states of the Pb atom were calculated using the
PT2/CI and RCC-SD methods, employing both the all-electron Dirac–Coulomb Hamiltonian
and the non-relativistic-type RECP Hamiltonian. The accuracy of our generalized RECP [16]
and the RECP of Christiansen and co-workers [24] (denoted below as ‘ChRECP’ for brevity)
was tested in calculations on neutral Pb atom and the Pb2+ ion. For both RECPs, the 22
outermost valence and outer core electrons are included explicitly in the Pb calculations (20
electrons for Pb2+). Below we refer to the 6s and 6p shells as valence and to the 5d, 5p and lower
shells as core. A point nucleus model was employed in all calculations. The effect of a finite
nucleus model is not expected to be large for transition energies of the Pb atom, because the 6s
electrons (which have a non-vanishing density on the Pb nucleus) are not excited in the leading
configurations of all the states considered (see our results for the Hg atom [17]). In all tables
the maximum error is maxM

i> j |δEi−δE j |, the average error is 2
∑M

i> j |δEi−δE j |/[M(M−1)]
and δEi = ERECP

i −EDC
i .

4.1. Contribution from correlation with core shells

The calculated transition energies are presented in table 1. The basis sets [3, 5, 3, 2],
[7, 6, 6, 4, 4]/[3, 5, 3, 2] and [7, 6, 6, 4, 4] were used in the four-electron CI (4e–CI), PT2/CI
and RCC-SD calculations, respectively. The basis set for RCC-SD is identical with the PT2
part of the PT2/CI basis. The average 4e–CI energy of the five lowest-lying Pb levels was used
as the E value in equation (4). Varying E by 0.1 Hartree changes the final transition energies
by less than 50 cm−1.

The biggest error in the 4e–CI excitation energies with respect to the experimental data,
1707 cm−1, goes down to 492 cm−1 when 36 electrons are correlated. As expected, the biggest
OC–V contribution to the transition energies comes from correlation with the 5d shell (see the
14e-PT2/CI and RCC-SD results in table 1). The corresponding contribution to transition
energies is up to 1300 cm−1. A rather large contribution from correlating the 4f shell (up to
170 cm−1) is due to the fact that this shell is energetically close to the outer core shells. Despite
the relatively small average radius, the orbital energies of 4f spinors are very close to those of
5s spinors.

We performed a detailed analysis of the correlations with the 4f shell on the basis of RCC-
SD calculations. It shows that angular OC-V correlation, described by excitations of occupied
to virtual orbitals with similar radial distribution but different angular momentum of the type

† See [18] for details of the optimization.
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(4f, 6p) → (g, d) and (4f, 6s) → (g, p), gives the main contribution of the 4f shell to transition
energies studied. Contribution from the former type of excitations is at the 50–150 cm−1 level
for different terms and has the opposite sign to the contribution from the excitations of the latter
type, which is at the level 20–50 cm−1 (see [18] for details). In the case of 5s and 5p shells
angular correlation of this kind is suppressed; for example, (5p, 6p) → (5d, d) is forbidden
because the 5d shell is occupied.

4.2. Accuracy of RECPs

Errors in calculated transition energies caused by the ChRECP and GRECP approximations
are studied by comparing the RECP and all-electron Dirac–Coulomb calculations. The
correlation basis set [3, 5, 3, 2] described in section 3 is used for the 4e–CI and 4e–RCC
calculations. Preliminary RECP calculations have shown that it is preferable to optimize the
basis sets independently for DC, GRECP and ChRECP calculations accounting for OC-V
correlation, in order to attain satisfactory convergence of the total energies. To minimize the
computational effort at the basis set generation stage, a simplified generation scheme was used
which, nevertheless, demonstrated excellent agreement for the DC/RCC excitation energies
compared with the results presented in table 1 (with the basis sets described in section 3). For
each Hamiltonian (GRECP, ChRECP and all-electron DC), a scheme close to that described
in section 3 is used: first, a few spinors in each symmetry are obtained from Hartree–Fock
calculations of some atomic or ionic states and are selected with the help of the functional (9).
The next function is then derived by multiplying the radial part (in all-electron calculations
the radial part of the large component) of the last selected function of the same symmetry
by the radial variable r (see [9]). The corresponding small components for four-component
functions are formed using the ‘kinetic balance’ condition. Functions of the same symmetry
are orthogonalized and correlation calculations are performed. The basis set is extended until
the energy functional is not more than 50 cm−1 (see section 3). This procedure yielded a
[15, 14, 12, 8] correlation basis set for the 14e, 22e–RCC and 14e, 22e-PT2/CI calculations of
Pb. The same procedure was applied to Pb2+ and gave the basis sets [6, 6, 8, 5, 4] for 2e–CI
and [15, 14, 12, 8] for 12e, 20e–RCC.

The results of the RECP/RCC and RECP/PT2/CI calculations for the 6p2 states of Pb are
presented in table 2 (see also table 1 in [18]). The accuracy of the GRECP approximation for
these states is on average only about 1.5 times better than that of ChRECP. Similar calculations
for the 6s2 → 6s6p transitions in Pb2+ (table 3) show a different picture, with GRECP giving
an average accuracy about eight times higher and a maximum error more than 10 times lower
compared with ChRECP values. It should be noted that ChRECP errors in this case have
different signs for valence CI and 12e, 20e–RCC-SD. Thus, the two RECPs are satisfactory for
describing the excitation spectrum of Pb, whereas GRECP is much better for Pb2+ excitations,
indicating that GRECP treats the 6s shell of Pb more accurately than ChRECP.

It has been shown earlier [14, 16, 22] that the GRECP version applied here gives no great
improvement for transition energies between terms with the same electron configuration as
compared with the conventional (‘ionic’) RECP versions treating the same number of electrons
explicitly. This may be understood by considering the term-splitting energies within the
framework of the Rayleigh–Schrödinger perturbation theory (PT) for the corresponding spin-
adapted (and spatial-symmetry-adapted) wavefunctions (SAFs). Let us construct zero-order
approximations for the SAFs from the occupied spin-orbitals of a one-configurational generator
state averaged over the terms, so the SAFs describing the terms of interest are eigenfunctions of
the same unperturbed spin-independent Hartree–Fock Hamiltonian H (0) (which is, obviously,
a Hartree–Fock operator for the generator state). The energies of the terms are degenerate
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Table 2. Errorsa of RECP calculations in reproducing the corresponding all-electron transition
energies (in table 1) of low-lying states of Pb. Experimental energies appear in table 1. All values
are in cm−1.

RCC-SD PT2/CI

GRECPc ChRECPd GRECPc ChRECPd

Number of correlated electrons
Termb 4 14 22 4 14 22 4 14 22 4 14 22

3P0 0 0 0 0 0 0 0 0 0 0 0 0
3P1 12 67 57 17 74 79 26 56 69 31 63 58
3P2 13 57 52 35 74 85 36 62 77 38 67 66
1D2 24 84 86 75 120 169 46 89 120 76 82 81
1S0 48 103 107 76 128 152 57 90 127 77 149 161

Max. error 48 103 107 76 128 169 57 90 127 77 149 161

Av. error 22 47 50 44 60 82 27 43 65 40 69 63

a In this table, errors were calculated as differences between transition energies from RECP and
corresponding all-electron calculations (in table 1). The point nucleus model is employed.
b The leading configuration is 6s26p2.
c GRECP from [16, 22].
d RECP of Christiansen’s group [24].

Table 3. Errorsa of RECP calculations in reproducing the corresponding all-electron transition
energies (in columns 4–6) of low-lying states of Pb2+. All values are in cm−1.

All-electron GRECPb ChRECPc
Exper.

Conf. trans. Number of correlated electrons
(Term) energ. 2 12 20 2 12 20 2 12 20

6s2(1S0) 0 0 0 0 0 0 0 0 0 0
6s16p1(3P0) 60 397 55 130 61 657 61 661 −40 −187 −192 −279 1247 1292
6s16p1(3P1) 64 391 59 706 65 787 65 833 −43 −177 −173 −295 1312 1318
6s16p1(3P2) 78 984 73 857 79 868 80 130 −45 −105 −122 −358 1439 1504
6s16p1(1P1) 95 340 95 474 97 966 98 244 −131 −52 −27 −431 2049 2035

Max. error 131 187 192 431 2049 2035

Av. error 53 103 106 187 858 856

a In this table, errors were calculated as differences between transition energies from the RECP
and corresponding all-electron calculations (in columns 4–6) by RCC-SD (12 and 20 electrons) or
CI (two electrons). The point nucleus model is employed.
b GRECP from [16, 22].
c RECP of Christiansen’s group [24].

in zero order. The degeneracy is removed in first order, in which the perturbation on the
spin–orbit and two-electron interactions usually provide good approximations to the exact
term-splitting energies. The spin-averaged one-electron part of the Hamiltonian, including,
obviously, the non-local GRECP terms in the case of the GRECP Hamiltonian, gives no
contribution in first order; its contribution will appear only in the denominators of higher PT
orders. Although the spin–orbit part of RECPs contributes to the term-splitting energies in
first-order PT, the difference between GRECP and ChRECP contributions is minor because of
the relative smallness of the non-local spin–orbit GRECP terms. In excitations which change
the electron configuration, the PT contribution from the non-local spin-averaged GRECP terms
appears already in zero order. More details may be found in the section ‘Theory’ of [14]. It
is worth mentioning that errors given by conventional RECPs for term-splitting energies are
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usually smaller than for excitation energies which change the occupation numbers of valence
shells, as may be seen by comparing tables 2 and 3.

The SCF results [18] show that the accuracy of the ChRECP corresponds closely to that
of our ionic RECP version [22]. In principle, the GRECP technique allows one to reduce
substantially the ‘correlation-stage’ RECP errors (see [14]). This is, however, of limited
interest, because the GRECP approximation is not the main source of errors in calculations of
Pb-containing molecules. A more serious source of error is discussed in the next subsection.

4.3. Contribution from three- and four-particle correlations

Table 1 shows that single- and double-excitation cluster amplitudes are not sufficient to give
the Pb transition energies at an accuracy level of ∼ 200 cm−1. This is also indicated by
comparing the 4e–RCC-SD with 4e–CI total energies (table 4). Since the latter is close to
full 4e–CI (some of the less important quadruple excitations are omitted, and the estimated
deviation from full 4e–CI is about 50 cm−1 for transition energies and 100 cm−1 for total
energies), the differences are ascribed to neglecting the three- and four-electron excitations in
the former. These terms are significant, except for the 1D2 level, for which the total energies
are almost equal. Analysing the correlation structure for four-valence electrons in the 1D2 and
1S0 terms, the different behaviour appearing already for the (s, p) basis set (table 4) shows
that some four-electron correlation terms not allowed in the 1D2 state because of symmetry
are significant for the 1S0 state and are not described by the RCC-SD approximation used
here. Let us consider virtual excitations for the component of the 1D2 level with maximum
projection on the z-axis, Jz = 2, which has the leading configuration 6s2

1/2 6p3/2,+1/26p3/2,+3/2.
No non-trivial triple- and quadruple excitations of the type (6s26p2 → 6p4) are allowed from
this configuration, since Jz must be conserved. These excitations describe polarization of
the valence electrons and, in particular, admixture of their tetrahedral configuration, which

Table 4. Contributions from triple- and quadruple-excitation amplitudes to Pb total state energies
and errors for the VCIC-corrected values of transition energies. Experimental energies appear in
table 1. All values are in cm−1.

Basis set

[3, 5] [3, 5, 3] [3, 5, 3, 2] Errors in
�a �a �a transition energiesb

Term Number of correlated electrons
(leading
configuration) 4 4 4 14 22 36

3P0 (6s2
1/26p2

1/2) −334 −690 −586 0 0 0

3P1 (6s2
1/26p1

1/26p1
3/2) −120 −389 −232 −276 −96 −60

3P2 (6s2
1/26p1

1/26p1
3/2) −104 −242 −109 −62 113 157

1D2 (6s2
1/26p2

3/2) −11 47 −30 −407 −62 26

1S0 (6s2
1/26p2

3/2) −412 −680 −777 −261 8 100

Max. error 412 737 777 407 209 217

Av. error 196c 410c 347c 206 88 106

a �i = ECI
i − ERCC

i .
b Errors were taken as differences between calculated values (by RCC-SD + VCIC) and
experimental data (in column 2 of table 1).
c �av = 1

5

∑5
i=1 |ECI

i − ERCC
i |.
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minimizes the interelectronic repulsion energy for four electrons. The opposite is true for the
1S0 state, for which these triple and quadruple excitations provide some of the most important
correlation contributions.

The non-negligible differences between 4e–RCC-SD and 4e–CI values come from
omitting three- and four-body cluster amplitudes in RCC-SD. The relevant wavefunction
diagrams include connected three- and four-body terms, which first appear in second- and
third-order PT, respectively. The energy difference between the 1D2 and 1S0 states stays
almost the same when the number of correlated electrons in the RCC-SD method is increased
from four to 36. The effect of triple- and quadruple-cluster amplitudes for the valence electrons
(from the physical point of view these amplitudes also correct the single and double amplitudes
obtained in the subduced sectors) can be estimated from the valence CI corrections (VCIC), the
differences (E4e–CI

i − E4e–RCC
i ), which are then added to the other total Ne–RCC-SD energies

(N = 14, 22, 36). The assumption involved is that the effect of the triple- and quadruple-
cluster amplitudes for valence electrons estimated from 4e–RCC-SDTQ calculations (which
are equivalent to four-electron full CI) will not change much when more electrons are treated
and OC–V and OC–OC correlation is included. It should be noted that those three- and four-
body terms, not taken into account by RCC-SD in the valence region, cannot be satisfactorily
included by extending the model space within the Fock-space RCC-SD method. The RCC-SD
results corrected for three- and four-body effects by VCIC are shown in table 4. Agreement
with experiment is improved greatly over uncorrected RCC-SD values, reaching the desired
level of ∼ 200 cm−1 for 22 and 36 correlated electrons.

5. Concluding remarks

We suggest that inclusion of estimated triple and quadruple valence excitation effects can
significantly increase the accuracy of the RCC results. Breit effects should also be included
at this level of accuracy. The contribution of the Breit term to the spin–orbit splitting of the
Tl ground state (i.e. the 6p1/2 → 6p3/2 excitation) has been calculated at −90 cm−1 [25].
Assuming a similar relative effect in the case of Pb, rough estimates would give contributions
of about −100 cm−1 to the first two transitions and about −200 cm−1 to the third and fourth
transitions.

In accurate calculations of Pb-containing molecules it would be preferable to include
correlation with the 4f, 5s and 5p shells within the framework of the ‘correlated’ RECP versions
and not explicitly, thus reducing the computational effort. In this case the generation of the
‘correlated’ GRECP for Pb is of particular importance, because it allows one to minimize the
errors of the RECP approximation which, otherwise, can be comparable with the correlation
errors.

We should note that the current version of the atomic RCC-SD codes is substantially
faster than the PT2/CI codes for equivalent calculations. The high speed of atomic RCC-
SD calculations can be used efficiently in the generation of optimal (compact) basis sets for
correlation structure calculations of molecules containing Pb and other heavy atoms.
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