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The spin-rotational Hamiltonian parameters for the ground states of HgF and PbF molecules are evaluated on the basis of the

ab initio effective core potential calculations. The term
several other P- and P, T-odd terms are included.

1. Introduction

In this paper we report the results of the calcula-
tion of the effective spin-rotational Hamiltonian pa-
rameters for two heavy radicals — HgF and PbF. It
was shown in a number of papers that these mole-
cules can be uged in the experimental search for the
break of time-reversal invariance [1-3]. The latter
can be caused either by P, T-odd electron-nucleus
interaction or by the existence of the multipole mo-
ments of the particles that break the inversion sym-
metry P and the time-reversal symmetry 7. In par-
ticular, the most interesting is the electric dipole
moment (EDM) of the electron [4].

In order to treat these phenomena we have intro-
duced several P, T-odd terms into the spin-rotational
Hamiltonian H,. The corresponding constants are
evaluated in terms of the EDM of the electron d., the
magnetic quadrupole moment of the nucleus M and
the constant of the scalar electron-nucleus neutral
currents interaction Kpr. One more term in H, is
connected with the anapole moment of the nucleus
Kp and is P-odd but T-even [5,6].

Our results are in reasonable agreement with ear-
lier calculations [7,8] and with the experimental data
on the hyperfine structure, the Zeeman effect and the

corresponding to the electric dipole moment of the electron as wel| o

w-doubling constant. On these grounds we conclude
that the accuracy of our calculation of the P-odd and
P, T-0dd terms of the H,, operator is close to 20%.
This is much better than in the case of the TIF mol-
ecule, where the P, T-odd effect is connected with
the EDM of the proton and the so-called Schiff mo-
ment of the Tl nucleus and where the computational
accuracy cannot be controlled [ 9,10].

The structure of the paper is as follows. In the sec-
ond section the effective Hamiltonian H, is defined
and its constants are expressed in terms of the ele{:-
tronic matrix elements (MEs). The third section is
devoted to the description of the SCF calculations of
the molecular wave function (WF). The results of
the calculation are reported in the fourth section. The
discussion follows in the fifth section of the paper.

2. Spin-rotational Hamiltonian

Electronic states of diatomic radicals are classified
according to the the projections 4 and « of the or-
bital and total electronic angular momenta on the
molecular axis. The ground states for the HgF and
PbF molecules are 2%, ,, (4=0, || =1) and I1,»
(4]=1, jw|=1) respectively.
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It is convenient to describe .the spir}-rotational
spectrumm of the ground electronic state in terms of
the effective spin-rotational Hamiltonian H,,. Two
clectronic states with different signs of w are degf:n-
erate. In this subspace one can define tbe effecuve
Jectron spin S, S’=4%. Then the Hamiltonian H,,
can be written in the same manner for both mole-

cules [11]:

Hs,=BJZ+AS’-J+S’-A-I
+4S-G-B—Dn-E
+ Worpn XS I+ (W rkp 7+ Wad.)S' 0

M
41(21_1)[ k k 3 ,k( )]
X [2W uSime+2W 3y (S m)mny] . (1)

The first line of this expression corresponds to the
rotational structure with w- or spin-doubling and the
hyperfine interaction of the electron spin with nu-
clear spin I. B is the rotational constant, J is the elec-
tron-rotational angular momentum, 4 is the w-dou-
bling constant. For the 2X,,, molecules a transition
to the standard notations follows by the substitu-
tions y=A4—2B and N=J—.8", where y is the spin-
doubling constant and N is the rotational angular
momentum.

The second line describes the interaction of the
molecule with the external fields B and E (n is the
unit vector directed from the heavy nucleus to the
light one).

The two last lines of eq. (1) correspond to P, 7-
odd weak interactions of the electrons with the heavy
nucleus and to the interactions caused by the P- or
P, T-forbidden electromagnetic moments of the elec-
tron and the nucleus. The corresponding electron op-
erators are given below. A detailed discussion of these
subjects can be found in ref. [12] by Khriplovich
and the recent review of Hunter [13].

The parameter 4, the tensors A and G, the molec-
ular dipole moment D and the constants W, are ex-
pressed in terms of the one-electron MEs.

Below we shall restrict ourselves to the single-par-
licle approximation. Then for the 2X,,, and I, ,,
States there is only one unpaired electron. As far as
all electron operators of interest here are spin-de-
pendent, contributions of the closed shells to the MEs
turn to zero. (The exceptions are the rotational con-
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stant B and the molecular dipole moment D which
are calculated in a standard manner.) So we have to
know .only the WF of the unpaired electron.

The quantum number 4 is good in the nonrelativ-
istic approximation but it is not valid for molecules
with such atoms as mercury and lead. Moreover, as
will be seen later, the MEs of interest are very sen-
sitive to the spin-orbital mixing. We assume that the
main mixing takes place between the two lower states.
For both molecules they are 2%, ,, and °I1, ,, [14]. In
this approximation the WF of the unpaired electron
can be written in the form [7,8]

lw)=&|m, w)+nlo, w) , (2)

where w=*14, |7, ) and |0, @) are the WFs of the
unpaired electrons in the 2, and 2I1, , states. One
can expect that for HgF |&] <1, while for PbF
7] <« 1.

Now we can write the ME for the w-doubling con-
stant 4:

4/2B=—/2¢w=1[j} |o=—1}>
=n*=22 &<zl |, (3)

where j¢ and [ are the total and orbital angular mo-
menta of the electron.

The tensors A and G are diagonal in the molecular
frame of reference, the two components perpendic-
ular to the molecular axis being equal to each other.
For the tensor G one has :

G||=2<%|lo+250|%>=2’72>
Gy =—2 (LIL+28 -4
=212~2/2&¢xlh | o) - (4)

It is seen from egs. (3), (4) that the constants 4, G,
and G, are very sensitive to spin-orbital mixing (2).
For the pure 2%, ,, state é=0and 4/2B=Gy=G, =2,
while for the 21, , state =0 and 4/2B=Gy=G, =0.

Consider the hyperfine tensor A and the constants
W,. These parameters arise from the electron oper-
ators that are singular in the vicinity of the nucleus.
In this region the WF is relativistic and has a strong
Z dependence. As a result, the corresponding MEs
are enhanced for the heavy nuclei. (That is why we
did not include the same terms for the fluorine nu-
cleus in (1).) Let us expand the WF (3) over the
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basis of the relativistic atomic orbitals of the heavy
atom, :

fw>=C_,168,,,, 0 +2wC, [6D1/2, @)
+C_3|6D3/2, @) +20C, | 5ds,,, w)
+C—3|5d5/2,w> . (5)

In this expansion we took into account only the
orbitals of the valence shells. The accuracy of this
approximation will be discussed below. The factors
2w=121 arise from symmetry considerations [7].
The expansion coefficients C, are numerated by the
relativistic quantum number k= (/—j) (2j+1).

The standard form of the atomic WF is

1( Poi(r) i (9, p) )
r\iQu(r)2_im(9, 9) )’

where £,,, is the spherical spinor. Taking into ac-
count that the hyperfine interaction operator can be
written as (atomic units are used throughout)

_ﬂl-nz)(n _ 0 o
th— I r2 > a'—(o_ O>9 (7)

(6)

Wntim =

where yy is the nuclear magnetic moment, we can
express the components of tensor A in terms of ex-
pansion (5) as

Ay=3(C%ih_y_,—Cihyy)
+35(C2oh_y 3 —C3hyn) +BC?3h_ 5,
+4/2(C_\Coh_, ;= C,C_yh, _,)
~8/3C,C_sh,_5, (8)
A, =3(C2 h_ _,+C3hy))
+18(C2oh 5+ C3hy ) +38C2 3h_5
=32 (C_,Coh_ 13+ C Cyhy )
~2/6C,C_shy_s, 9)

hes=2 [ o000 Y. (10)
0

In these expressions we use the index & instead of nlj
for short.

The interaction of the electron EDM with the elec-
tromagnetic field can be written in various forms. It
is better to use in calculations the form where the
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term which turns to zero due to the Schiff theoren
[15] is excluded [12]:

0

0
0 a)[—vwn, (11)

Hd =2de<

where ¢ is the electrostatic potential. Then for the
WF (5) we have

Wd=C_1C1h'_1,1+C_2C2h'—2,2, (12)
A
ho =8 l Pe0Lar. (13)

The electromagnetic interaction of the nuclear
magnetic quadrupole moment M with the electron
has the form [3]

M
Hy=-— m——l) (LL+ LI —3I(I+1 Y0ik]
3
X 53 (ena;mmn +epo,mn;) (14)

where €, is the antisymmetric tensor and o; was de-
fined in (7). The explicit form of the electronic part
of the ME is more complicated than the previous ones
and we do not give it here. But two important fea-
tures have to be mentioned. (i) The radial integrals
involved have the form N

Mea= [ Pe0AP0O Y. (19)
0

(i) One can construct two second rank P, T-odd
tensors from the vectors §’ and n:

Q}k=S;nk+niS;(_%(S,'”)aik (16)
and
Q% = (8"1) (mm+nim = 36y,) . (17

The tensor Q% is diagonal in the w=* § subspac
while the tensor Q) is not. The electronic tensor 18
eq. (14) can be expressed as a sum of tensors (16)
and (17) as is done in eq. (1). We have put the ut-
symmetrized form of these tensors there making usé
of the symmetry properties of the nuclear tensor- It
can be shown that even for the pure 2%, ,, state both
terms in this sum are not zero.

There are two more terms in eq. (1) correspond-
ing to the nuclear anapole moment interaction a
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'the P, T-odd scalar neutral currents interaction:

H,,:-\G/%pran(r), (18)

Hp,T=i%ZKP,T?oJ’5n(’), (19)
where G is the Fermi constant (\/§ Ga= 3.150%
10-'#a.u.), ¥, and ys are the Dirac matrices and r(r)
is the nuclear density normalized to unity. These in-
teractions, being nonzero only inside the nucleus, are
sensitive only to the s,,, and p,,, terms in the mo-
lecular WF (5):

Wp=(\/_8_ Ga

x| (PLetipe o ar)eaG, @)
0

WP,T = (\/8— GaZ

x[Lerro el @
0

These formulae as well as formulae (8)=(10), (12),
(13) and (15) express the parameters of the spin-
rotational Hamiltonian in terms of the coefficients
C, and the atomic radial integrals. All integrals are
singular at the origin and depend on the small com-
ponents of the Dirac functions.

3. Molecular SCF calculation

Today there exist well-developed methods for ab
initio calculations of the heavy diatomics (see for
example ref. [16]). Unfortunately, they cannot be
used directly for our purpose because of the wrong
behavior of the resultant WF in the vicinity of the
nuclei. Here we follow a simple procedure, proposed
in ref. [8], which can give the first approximate so-
lution to the problem. The main features of this pro-
cedure are as follows.

(1) We use the minimal atomic basis set for flu-
orine and only five relativistic valence orbitals for
lead and mercury: 5ds;, 5ds/z, 6sy2, 6D/, and

PHYSICS LETTERS A

20 July 1992

6p3,2. Population analyses as well as the large value
of the molecular dipole moment show that for both
molecules the heavy metal atom is positively charged.
For this reason the orbitals are calculated for the
positive ions with the help of the HFD program [17].

(2) We use the shape consistent relativistic effec-
tive core potential (REP) [18] to exclude the core
electrons of the metal from the calculations. The REP
is divided into a spin independent part (AREP) and
an effective spin—-orbit potential (ESOP). The use of
the REP means that we replace the valence orbitals
mentioned above by pseudo-orbitals. The orbitals
and the pseudo-orbitals coincide everywhere outside
the core region while inside this region the pseudo-
orbitals are smoothed and do not even give an ap-
proximation to the orbitals.

(3) We perform the molecular SCF calculation
with the AREP in the minimal basis set to obtain the
two lower molecular states 2X and I1. For this pur-
pose (pseudo)orbitals as well as the REP were ap-
proximated by sets of Gaussian type functions. For
the fluorine orbitals this expansion was taken from
ref. [19]. After that the molecular package MOL-
CAS [20] was used.

(4) The total molecular Hamiltonian including the
AREP and the ESOP is diagonalized in the subspace
of these two states giving the 2%, 5, 2I1,,, and %[5,
states. In other words in this stage we find the coef-
ficients & and 7 in eq. (2) for the ?%,,, and “I1,,,
states while 2I1;,, is a pure II state.

(5) The resultant LCAO expansion for the un-
paired electron has been used to calculate the sin-
gular MEs given in the previous section. To do this
we substitute the pseudo-orbitals which were used in
the molecular calculation by the corresponding
orbitals.

A combination of points (2) and (5) is used here
to restore the molecular WF in the core region. An
alternative way is to use some matching of the mo-
lecular WF in the outer region with the atomic one
in the inner region [9,10]. The advantage of the lat-
ter method is that one can use a much more flexible
basis set of the primitive Gaussians for the molec-
ular calculation, while in our method we are re-
stricted to the atomic pseudo-orbitals. But a match-
ing procedure is done inside the core and thus no REP
can be used. On the other hand, the core is relativ-
istic and cannot be treated adequately with the ex-

&
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isting molecular programs. That can introduce a large
error in the matching state. Another argument to use
the REP instead of the all-electron calculation is that
this method seems to be clearer from the physical
point of view. Indeed, as far as molecular bonds are
formed outside the core where the pseudo-orbitals
coincide with the orbitals, they are almost indistin-
guishable from each other in the molecular calcula-
tion until the core is frozen. The use of the minimal
atomic basis for the treatment of the hyperfine in-
teraction in the diatomic radicals proved to be pro-
ductive in a number of semiempirical calculations
(see, for example, refs. [7,21] and references
therein).

Of course, the arguments given above cannot guar-
antee the quality of our method. Fortunately, in the
case of the HgF molecule there are experimental data
on the tensors A and G [21] that give a very good
test on the quality of the molecular WF. In fact, ac-
cording to egs. (3) and (4) the tensor G can be used
to check the mixing (2) while the tensor A is sen-
sitive to the behavior of the WF at the origin. For the
PbF molecule the situation is not so favorable be-
cause there is only one experimental result on the w-
doubling constant 4 [14].

The method discussed above is appropriate only
for the MEs of the singular operators and can pro-
vide an accuracy of about 20%. For such parameters
as the rotational constant (i.e. the internuclear dis-
tance) and the molecular dipole moment, calcula-
tions in the basis set of primitive Gaussians were
performed.

4. Results

In table 1 several standard spectroscopic charac-
teristics for the two lower states of the HgF and PbF
molecules are given. After the SCF calculation in the
basis set of primitive Gaussians the CI study was
made by means of the CASSCF program. The active
space included three outer electrons. In this stage the
spin-dependent part was excluded from the
Hamiltonian.

For the PbF molecule there is a good agreement
between the calculated and the experimentally mea-
sured internuclear distances. The calculated inter-
nuclear distance for the HgF molecule corresponds
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to the rotational constant of the ground state
B=0.222 cm~!. For the vibrational and transition
frequencies the agreement with the experiment is not
so good but for one exception is within 20%.

In table 2 the parameters of the spin-rotational
Hamiltonian which depend on the relativistic fea-
tures of the molecular WF are listed. A comparison
of the calculated and experimental values for
AG=G;—- G, (HgF) and 4/2B (PbF) shows that our
method leads to some. overestimation of the spin-
orbital mixing. This is probably due to the use of the
ionic orbitals for the metal atom. The use of the
atomic basis instead of the ionic one leads to the no-
ticeably larger underestimation of this mixing.

For the HgF molecule the deviation of the calcu-
lated values from the experimental ones for 4, and
A, is equal to 7%. It is also important to check the
dipole constant 44=3(4,—A,) where this devia-
tion is 14%. It follows from eqs. (8) and (9) that the
contribution of the s function to 44 turns to zero and
the contribution of the p functions becomes domi-
nant. As far as the s and p functions give the main
contribution to the parameters W, we can conclude
that the test on A, 4, and A, is very important.

For the parameters W, only theoretical results are
available. Most of them differ from each other by less
than 20%. The larger difference of the results [8] is
caused by the overestimation of the spin—orbital
mixing parameter 7. For the minimal # from the in-
terval given in that paper, the results of that work
coincide with our calculation within the same 20%
interval.

5. Discussion

The above treatment leads us to the conclusion that
the accuracy of our calculations of the spin-rota-
tional Hamiltonian parameters is close to 20%. This
means that the results of the experiments with these
molecules, proposed in refs. [5,1-3,12], can be €x-
pressed with reasonable accuracy in terms of the fun-
damental constants d,, «p r and the parameters of the
nucleus «p, M. As was shown in ref. [3], the nuclear
physics methods allow one to calculate the latter for
different models of the weak interactions. The high
sensitivity of these experiments as well as the pos
sibility of interpretation in terms of the fundamental
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Table 1
[nternuclear distances, vibrational constants, transition frequencies and dipole moments for HgF and PbF molecules.

R @, |Es—Enql| D

(A) (em™) (cm™) (Db)
HgF X experiment # - 491
this work 2.11 446 4.15
ref. [22] 2.07 351
HgF 211 experiment [14] # - 488 41000
this work (2.23) 333 35910 2.75
PbF 211 experiment [14] ® 2.05 516
this work 2.06 489 4.62
ref. [23] 2.07 553
PbF 2% experiment [14] 2.16 395 194302
this work 2.18 418 23380 5.5
ref. [23] 2.16 487 19050

» Averaged over the states 21, , and *Tl; ;.

Table 2
parameters of the spin-rotational Hamiltonian for the ground states of HgF and PbF. Components of the hyperfine tensor are given for

the "*Hg and 297Pb isotopes (I=1}), the constant W}, is for 2'Hg (I=%). (a) Ref. [21], experimental data. (b) Ref. [7], semiempirical
calculation. W, and Wy, were calculated later with the same method. y/2B=0.032 (HgF). (c) This work, preliminary results [24]. y/
1B=0.036 (HgF); 4/2B= —0.347 (PbF). (d) Ref. [14], experimental result. 4/28= —0.3033 (PbF). (e), (f) Ref. [8], semiempirical
calculation. Minimal and maximal spin—orbital mixing, respectively. In ref. [8] the parameters W, were given with the wrong signs.

Al A G, G, W, Wer Wi Wl w2, .
(MHz) (MHz) ) (kHz) (kHz) (10**Hz/ecm)  (10%* Hz/ecm?) (1034 Hz/e cm?)
HgF  (a) 22621 21880 1.993 1.961
(b) . 2.6 —-191 4.8 -3.6 5.2
(c) 24150 23310 1.996 1.960 2.5 —-185 —-48 -3.8 5.4
PF  (d)

(e) 8690 —7460 0.034 —-0.269 —0.65 51 1.0
(f) 9550 —8240 0.114 —0.438 —1.25 99 1.8
(c) 10990 —8990 0.040 -0.326 -0.72 55 1.4
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