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Abstract—Variants of the construction of the effective Hamiltonian for valence electrons of an atom are dis-
cussed. It is shown that a proper choice of the optimum initial approximation can substantially improve the
agreement between calculated and experimental spectra of multielectron atoms. The optimized effective Hamil-

tonian can be used for calculations of atomic quantities.

INTRODUCTION

In [1], a method was suggested for calculating the
low-energy part of the spectrum of a multielectron
atom by solving the eigenvalue problem for the effec-
tive Hamiltonian H, of valence electrons. The Hamil-
tonian H,, was constructed using the many-body per-
turbation theory (MPT) for the residual interaction of
valence electrons with an atomic core. Such an
approach resulted in the improvement of the accuracy
of calculations of spectra of a number of heavy atoms
containing two or three valence electrons [1-4]. The
method yields the transition probabilities, constants of
the hyperfine interaction, and other atomic quantities
[5]. In addition, it was applied recently to calculations
of the hyperfine structure and P-, T-odd interactions in
BaF [6] and YbF [7] molecules.

The advantage of the method [1] over the other
methods for accounting for electronic correlations (see,
for example, [8]) is the possibility of constructing the
effective Hamiltonian in the multidimensional space.
This permits, in principle, calculations of atoms con-
taining many valence electrons. In this paper, we con-
sider the problem of the optimum choice of the initial
MPT approximation depending on the number of
valence electrons. This problem becomes especially
important for systems containing more than three
valence electrons. Such calculations are necessary, for
example, in connection with precision experiments on
parity nonconservation in lead and bismuth atoms [9,
10]. Molecular calculations also often deal with a great
number of valence electrons.

The effective Hamiltonian consists of two parts:
H(E) = Hpe + Z(E), (1)

where Hgc is the Hamiltonian in the frozen atomic core
approximation and X is the energy-dependent correc-
tion, which takes into account virtual core excitations.
It is assumed that the energy E is insufficient for exci-
tation of the atomic core electrons.

By introducing the projector P to the multielectron
subspace, which corresponds to the frozen atomic core,
the operators Hgc and Z can be written in the form

HFC = PHP, (2)
S(E) = PV'Ry(e)V'P, 3)

where H is the many-body Hamiltonian; Q=1-P, V'
is the operator of the residual interaction between elec-
trons, which will be defined below; and Ry(E) is the
Green function in the Q space:

Ro(E) = (E-QHQ)™. @)
The atomic spectrum is found from the equation
Heff(En)Qn 7 En(bn’ (5)

which is solved in the P space, but is equivalent to the
full multielectron Schridinger equation. It is obvious
that the effective Hamiltonian can be constructed only
within a framework of some approximation. For exam-
ple, the Hartree—Fock approximation for the Green
function (4) can be used, which results in good agree-
ment between theoretical and experimental spectra for
a number of heavy atoms [1-3]. In this paper, we study
the energy dependence of the operator X in more detail
and suggest the method for refining the theory, which
requires no substantial complications. As an example,
we refer to spectra of barium, mercury, and thallium.

ONE-PARTICLE APPROXIMATION

Consider a set of one-particle orbitals @, and the
corresponding one-particle energies €, (assuming that
€,2 €,_)- We assume that the first N, orbitals belong to
the atomic core and introduce the state |0), in which
only orbitals with n < N, are occupied. Let us introduce

creation operators for particles a,, i > N, and holes bn
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#n = N.. These operators allow one to construct many-
body basis states in the P and Q subspaces:

P: aj ..a|0), (6)
[b;la;;y ...a: |0}
Qi3 bl bl afﬂ a [0} %

where N, is the number of valence electrons.
The Hamiltonian Hg. can be now written in the form

+ 1 i ¥4
HFC = EL:()rL' + Zsr'ar' a; + 62 VFJ, iy i, r':ui,;ai_‘aizafi" (8)

where V: are matrix elements of the residual

flibils

interaction and
Ecure = <O|Hi0) (9}

is the atomic core energy.

By omitting the residual interaction V' in the Hamil-
tonian H, we obtain the following one-particle operator

HU — Ecore + ZEEa?ar’_ zaxrb:bn' (10)

This operator is a diagonal one in the representation
(6), (7), and, hence, it does not intermix the P and @
subspaces. The quality of approximation (10) is deter-
mined by the magnitude of the residual interaction,
which is equal to the difference between the exact and
one-particle Hamiltonians

V'=H_H, (11

It follows from the definition of the operator H; that
{(0]V'|0) = 0; however, the average value of the operator
V' for the wave functions (6) and (7) rapidly increases
with increasing N, This is explained by the well-
known fact that the interaction between electrons is
twice taken into account in a sum Zg; of one-particle
energies. Such sums appear when the operator Hj is
used for the construction of the approximate Green
function

RY(E)=(E-QH0)"

= Q(E,- Y eaja+ Y eb,b,) " Q.
where £, = E—E ..
Let us see what happens when this expression is
used instead of the exact Green function in (3). The

summation is carried out over the intermediate states
with one or two holes, because the residual interaction

(12)

) . ) 0
operator is two-particle. The matrix elements R, (E)
for the corresponding basis vectors (7) include differ-
ences of two sums of Hartree-Fock energies. Each of
the sums overestimates the interelectron interaction;
however, the hole sum always contains one or two
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terms, whereas the number of terms in the particle sum
is greater by N, and increases with increasing V,,.

We see that the operator R% (E) cannot be a good
approximation to the exact Green function when N, is
large. Note that the definition of the Green function
(12) corresponds to the Brillouin—Wigner MPT, which
1s known to be inadequate for a great number of parti-
cles (see, for example, [11], ch. 4). On the other hand,
the initial Hamiltonian can be easily improved by intro-
ducing the new operator

Hg = H(]‘f‘ﬁ‘ (13)

The shift & can be chosen, for example, in such a way
that the correction to the ground-state energy @; of an
atom would be zero:

(DGlH - Hol®g) = 0,28 = (D VD). (14)

The replacement of the operator (10) by (13) results
in the redefinition of the residual interaction operator:

P Pl (15)

It is obvious that such a replacement does not change
the form of expression (3), which contains nondiagonal
matrix elements of the residual interaction, but leads to
the replacement of the one-particle Green function:

Ro(E) — Ry(E-8) = (E-8-QH,Q)". (16)

Thus, in the lowest MPT order, when the Green func-
tion in (3) is replaced by the one-particle Green func-
tion, the use of Hamiltonian (13) instead of (10) is
equivalent to the replacement 2(E) — X(E — 8). We
will use this below in the discussion of the dependence
of the theoretical spectrum on the choice of 8. Note that
if 6 is determined from condition (14) and the function
@, is represented in the one-determinant approxima-
tion of the type (6), then

E-8=E—Eq+E2, (17)

where Eg = (QglH,l®g).

This means that when E = E; in the ground state, the
Green function (16) coincides with the Green function
in the Rayleigh—Schrédinger MPT, which allows one to
expect a faster convergence for a great number of parti-
cles. In this case, the main advantage of the Brillouin—
Wigner perturbation theory is retained—the possibility
of the construction of the effective operator in the sub-
space of an arbitrary dimensionality without imposing
the conditions of quasi-degeneracy of the levels of the
Hamiltonian H,.

CHOICE OF THE PARAMETER &

As was shown above, taking into account the shift 9,
equation (5) has the form

H,(E,—8)®, = E,®,. (18)
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Fig. 1. Dependences of ditferences between theoretical and
experimental energies of lower levels of the mercury atom

on the parameter 8. (/) 3Pg(656p11 (2) 3P|(656p};
(3) 3P(6s6p): (4) 'P\(6s6p); (5) 'Spibs7): (6) TS 1(6sTs);
(7) 150(6575) (see the text).

By solving this equation with different 8, we obtain
E,(8). By comparing the theoretical spectrum with the
experimental one, the optimum value of the shift can be
chosen.

We chose the mercury atom as the first example.
The atomic core ls%...5d" was constructed in the V¥
approximation. For two valence electrons, the complete
overlap of configurations was made in the basis set
including ten s. p, and d orbitals. seven f orbitals, and
two g orbitals. Equation (18) was solved for the atomic
levels 'Sy(6s2), 38,(657s), 'Sy(657s), Py, 1, 2(6s6p), and
1P (6s6p). The valence energies obtained were com-
pared with experimental values [12, 13]. Figure 1
shows the dependence of the difference between theo-
retical and experimental energies on 9.

As was expected, the absolute value of the MPT cor-
rections to energies increases for & < 0 and decreases
for & > 0. For & = 0, theoretical energies of all the levels
prove to be somewhat overestimated. One can see from
Fig. 1 that the position of the *P,(6s6p) triplet rather
weakly depends on ; thus it cannot be made closer to
its experimental value by varying & (this can be only
achieved in the energy region where the operator X has
poles). For the rest of the levels, the best agreement
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Fig. 2. Dependences of differences between theoretical and
experimental energies of levels of the 6s6p configuration of
the mercury atom on the parameter 8. The MPT correction

V:sp, 65,65, 6p O the exchange integral is reduced by 30%.
(1) 3Py(656p); (2) *P1(656p); (3) *Po(6s6p); (4) 1P| (656p).

with the experiment was achieved for 8 = —0.175 au.
This shift is substantially lower than the value & =
—0.318 au predicted by expression (14).

Let us now turn to the *P (6s6p) levels, whose posi-
tion is poorly predicted by the theory. The reason for a
large theoretical error is a very large correction to the

exchange integral Vi, ¢ 4.6, which determines the

distance between levels *P (6s6p) and ' P (656p) in the
one-configuration approximation (see, for example,
section 17 in [14]). When the overlap of configurations
is taken into account, the distance between the triplet
and singlet levels decreases by 30%, but is still mainly
determined by the same exchange integral. In the sec-
ond order of the perturbation theory, the screening cor-
rection is determined by the matrix element R, ¢y, 65, 6p>
to which a set of two-particle MPT diagrams corre-
sponds (see details in [1]). The magnitudes of these
matrix elements are

Hg : Vtﬁ;?. 6y, 63, 6p - 0093 au,
Rﬁp. 6. b5, 6p = —-0.019 au.

(19)

One can see from (19) that the correction reduces the
matrix element of the residual interaction by 20% (for
OPTICS AND SPECTROSCOPY
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most other matrix elements, the correction does not
exceed a few percent). Therefore. in this case, the sec-
ond-order perturbation theory is insufficient. The con-
sideration of higher orders will result in a decrease in
the screening correction. In this case, the triplet level
will descend, while the singlet level will raise. One can
verify that to improve the agreement with the experi-
ment, it is sufficient to reduce the correction Ry, 6, 65, 6p
by approximately 30% (Fig. 2).

The results of calculations of the mercury atom for
& =—0.175 are presented in Table 1.

One can see that the optimum choice of the param-
eter 8 for the mercury atom improves the accuracy of
the theoretical spectrum, however, the higher-order
effects cannot be eliminated completely.

For comparison, we performed similar calculations
for the barium atom, which, as mercury, s a two-elec-
tron atom. The results of this calculation are presented
in Table 2. The distance between levels *P(6s6p) and
LP,(6s6p) in barium is predicted by the theory an order
of magnitude better, which is explained by significantly
lower values of the exchange integral and the corre-
sponding screening correction:

Ba: Vlﬁp, 65, 65, 6p = 0057 au,
Rﬁp. By, 63, 6 = —0.0086 au.

(20)

For this reason, the theoretical spectrum of barium
agrees much better with the experiment (see calcula-
tions [2, 3]), and this agreement can be substantially
improved by varying the parameter 6. Unlike mercury,
for 8 = 0, the theory overestimates the valence energy,
resulting in the positive optimum shift 6 = 0.2 for most
levels and the zero shift for the levels of the 6s5d con-
figuration. This means that expression (14), which
yields in this case 8 =—0.2, is invalid for barium.
Finally, Table 3 presents the results of calculations
of the thallium spectrum. In this case, the best agree-
ment with the experiment was achieved when the effec-
tive Hamiltonian was calculated using the same valence
energy E,=—1.64 au for all the levels. This corresponds
to the shift & = —0.43 au for the ground state and & =
—0.27 au for the highest 6ds, state. The average shift is
close to the value —0.38 au, which expression (14)
yields. Note that the accuracy of the theoretical spec-
trum of thallium was improved, using the parameter £,
by an order of magnitude compared to calculations [1].

DISCUSSION

One can see that the theory admits the use of various
one-particle operators as the initial approximation. In
the case of many valence electrons, the initial approxi-
mation can be determined by specifying & from the
condition (14). When the experimental spectrum is
known, the best fit parameter 8 can be found. In this
case, the higher-order MPT corrections to the function
are minimized. In this way, the accuracy of calculations
Vol. 87 1999
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Table 1. Valence energies of the low-lying energy levels ol Hg

Theory Experiment [13]
Level
E,,au |AE,cm™!'| E,au |AE cm™

1So(65%) -1.0729 0 | -1.0729 0
3py(6s6p) | —0.8984 | 38300 | -0.9014 | 37645
3P (6s6p) | —0.8903 | 40080 | -0.8933 | 39412
IP,(6s6p) | —0.8682 | 44930 | —0.8722 | 44043
Ip,(6s6p) | —0.8269 | 53990 | -0.8265 | 54069
35,(657s) | —0.7888 | 62350 | -0.7888 | 62350
ISo(6575) | —0.7818 | 63890 | —-0.7816 | 63928

Note: The effective Hamiltonian was constructed for & = -0.175.
This shift corresponds to the best fit of experimental valence
energies £,.

Table 2. Valence energies of the low-lying energy levels of Ba

Theory Experiment [12]
Level
E,au |AE,cm™ | E,au | AE cm™!
180(65%) -0.55916 0 |-0.55916 0
3D(6s5d) | -0.51786 9064 | -0.51800 9034
3D,(655d) | —0.51700 9254 |-051717 9216
3D,(655d) | —0.51518 9653 | -0.51543 9597
IDy(6s5d) | —0.50699 | 11451 |-0.50724 | 11395
3py(6s6p) | -0.50319 | 12284 |-0.50327 | 12266
3P,(6s6p) | —0.50150 | 12656 |-0.50518 | 12637
3p,(6s6p) | —0.49750 | 13533 |-0.49758 | 13515
Ip,(6s6p) | —0.47629 | 18188 |-0.47863 | 18060

Note: The effective Hamiltonian was constructed for & = 0 for the
levels of the 655d configuration and for & = +0.2 au for the
rest of the levels. These shifts correspond to the best fit of
experimental valence energies .

Table 3. Valence energies of the low-lying energy levels of Tl

Theory Experiment [12]
Level
E,,au | AE,cm™ | E,au | AE,cm™

6pin | —2.07205 0 |-207221 0
6pap —2.03647 7808 -2.03670 7793
Tsyp | —1.95144 | 26472 | -1.95157 | 26478
Toun | —1.91636 | 34169 | -1.91657 | 34160
Tpyp | ~1.91180 | 35170 | -1.91201 | 35161
6dspn -1.90735 36148 —1.90764 36118
6dsp, | —1.90701 | 36222 | —1.90727 | 36200

Note: The effective Hamiltonian was constructed for the energy
E,=—1.64 au, which corresponds to the best fit of experi-
mental values of AE.
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of the atomic amplitudes can be improved, including
the amplitudes for which the direct experimental data
are absent. Of most interest is the use of the method of
effective Hamiltonian for precise calculations of effects
of parity nonconservation, which are necessary for ver-
ifying the agreement between predictions of a standard
model and atomic experiments [9. 10, 15, 16].

Comparison of the results of calculations of mer-
cury, barium, and thallium atoms shows that the accu-
racy of calculations is the worst for mercury and the
best for thallium. The typical value of the theoretical
error is ~600 cm™! for mercury, ~100 em™ for barium,
and ~20 cm™' for thallium. The reason for the improve-
ment of the accuracy of calculations in passing from
mercury to thallium is, probably, the increase in the
excitation energy of the atomic core, which equals
0.398, 0.756, and 0.873 au for these atoms, respec-
tively. Indeed, an increase in the excitation energy of
the atomic core should result in the increasing rate of
convergence of the MPT series and the decreasing role
of higher-order corrections.

The increase in the accuracy of calculations in pass-
ing from two-electron to three-electron atoms allows
one to expect good results also for the atoms containing
more than three valence electrons. for which the excita-
tion energy of the atomic core is even higher. In this
case, the main problem will be not the construction of
the effective Hamiltonian but the solution of the wave
equation in the valence space, whose size very rapidly
increases with increasing number of valence electrons.
Nevertheless, the valence problem for four electrons
can be still solved with sufficient accuracy.

As was shown above, the choice of the parameter 6,
with the help of expression (14). is far from optimum
for mercury and barium, but is significantly closer to it
for thallium. One can expect that this expression will be
even more appropriate in the case of four-electron
atoms such as lead.

CONCLUSIONS

The results of the paper can be briefly formulated as
follows:

(i) The subtraction of the parameter 0 from the oper-
ator of the residual interaction is equivalent, with an
accuracy of the higher-order terms of the perturbation
energy, to the calculation of the effective Hamiltonian
for the energy E — d.

(ii) The parameter 6 can be used as a fitting param-
eter to improve the agreement with the experiment.
When the number of valence electrons is greater than
two, the value of & can be chosen on theoretical
grounds, by setting the matrix element of the residual
interaction for one of the atomic states equal to zero.
Such a choice of the parameter & makes the variant of
the perturbation theory used here similar to the Ray-
leigh—Schrédinger perturbation theory.
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(iii) The absolute value of the optimum shift &
increases with increasing number of valence electrons,
while the derivative dEy,./dd decreases. This allows
one to use the same effective Hamiltonian for groups of
the adjacent levels, resulting in a significant simplifica-
tion of calculations.
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