Limit on the Cosmological Variation of \(m_p/m_e \) from the Inversion Spectrum of Ammonia

V. V. Flambaum1,2 and M. G. Kozlov3,1

1School of Physics, University of New South Wales, Sydney, 2052 Australia
2Institute for Advanced Study, Massey University (Albany Campus), Private Bag 102904, North Shore MSC Auckland, New Zealand
3Petersburg Nuclear Physics Institute, Gatchina, 188300, Russia

(Received 18 April 2007; published 15 June 2007)

We obtain the limit on the space-time variation of the ratio of the proton mass to the electron mass, \(\mu = m_p/m_e \), based on comparison of quasar absorption spectra of NH\(_3\) with CO, HCO\(^+\) and HCN rotational spectra. For the inversion transition in NH\(_3\) (\(\lambda \approx 1.25 \text{ cm}^{-1} \)) the relative frequency shift is significantly enhanced: \(\delta \omega/\omega = -4.46 \delta \mu/\mu \). This enhancement allows one to increase sensitivity to the variation of \(\mu \) using NH\(_3\) spectra for high redshift objects. We use published data on microwave spectra of the object B0218 + 357 to place the limit \(\delta \mu/\mu = (0.6 \pm 1.9) \times 10^{-6} \) at redshift \(z = 0.6847 \); this limit is several times better than the limits obtained by different methods and may be significantly improved. Assuming linear time dependence we obtain \(\mu/\mu = (-1 \pm 3) \times 10^{-16} \text{ yr}^{-1} \).

\begin{equation}
\delta \mu/\mu = (20 \pm 6) \times 10^{-6},
\end{equation}

at a time scale of approximately 12 Gyr. Assuming linear variation with time this result translates into \(\mu/\mu = (-17 \pm 5) \times 10^{-16} \text{ yr}^{-1} \). A different method, comparison of the hyperfine transition in atomic hydrogen with optical transitions in ions, was used in Refs. [4,5]. This method allows one to study variation of the parameter \(x = \alpha^2 g_p/\mu \). Analysis of 9 quasar spectra with redshifts 0.23 \(\leq z \leq 2.35 \) gave

\begin{equation}
\delta x/x = (6.3 \pm 9.9) \times 10^{-6},
\end{equation}

\begin{equation}
x/x = (-6 \pm 12) \times 10^{-16} \text{ yr}^{-1},
\end{equation}

which is consistent with zero variation of \(\mu \). In Refs. [6–8] the 18 cm \(\alpha\)-douplet lines in an OH molecule were studied from objects at the redshifts \(z \approx 0.247, z \approx 0.6847 \), and \(z = 0.765 \) and no time variation of the parameter \(g_p(\alpha^2 \mu)^\nu \) was seen, where \(\nu \leq 2 \).

Reference [9] suggested to use a decelerated molecular beam of ND\(_3\) to search for the variation of \(\mu \) in laboratory experiments. The ND\(_3\) molecule has a pyramidal shape and the inversion frequency depends on the exponentially small tunneling of three deuteriums through the potential barrier [10]. Because of that, it is very sensitive to any changes of the parameters of the system, particularly to the reduced mass for this vibrational mode. The authors of [9] found that \(\delta \omega/\omega = 5.66 \mu/\mu \) (note that Ref. [9] contains a misprint in the sign of the effect). Slightly smaller enhancement should also exist in NH\(_3\).

In this Letter we use the enhanced sensitivity of the inversion spectrum of NH\(_3\) to variation of \(\mu \) to place a new limit on the time variation of \(\mu \) at the cosmological time scale. We use high-resolution ammonia spectra for the gravitational lens B0218 + 357, published by Henkel \textit{et al.} [11]. The redshifts for ammonia lines are compared to the redshifts for the rotational lines of other molecules measured in Refs. [11–13]. The ammonia lines have an order of magnitude stronger dependence on \(\mu \) than the usual vibrational lines; this enhancement allows us to place the best limit on the variation of \(\mu \).

Inversion spectrum of NH\(_3\) The inversion spectrum of NH\(_3\) has been studied for a very long time [10] and is considered a classic example of the tunneling phenome-
The inversion vibrational mode is described by a double well potential with the first two vibrational levels lying below the barrier. Because of the tunneling, these two levels are split in inversion doublets. The lower doublet corresponds to the wavelength $\lambda = 1.25$ cm and is used in ammonia masers. Molecular rotation leads to the centrifugal distortion of the potential curve. Because of that, the inversion splitting depends on the rotational angular momentum J and its projection on the molecular symmetry axis K:

$$\omega_{\text{inv}}(J, K) = \omega_{\text{inv}}^0 - c_1\left[\frac{J(J+1) - K^2}{2}
ight] + c_2K^2,$$

(4)

where we omitted terms with higher powers of J and K. Numerically, $\omega_{\text{inv}}^0 = 23.787$ GHz, $c_1 = 151.3$ MHz, and $c_2 = 59.7$ MHz.

In addition to the rotational structure (4) the inversion spectrum includes much smaller hyperfine structure. For the main nitrogen isotope ^{14}N, the hyperfine structure is dominated by the electric quadrupole interaction (~ 1 MHz) [14]. Because of the dipole selection rule $\Delta K = 0$ the levels with $J = K$ are metastable, and in laboratory experiments the width of the corresponding inversion lines is usually determined by collisional broadening. In astrophysics, the hyperfine structure for spectra with high redshifts is not resolved and we will not discuss it here.

For our purposes it is important to know how the parameters in (4) depend on fundamental constants. One can measure only dimensionless ratios of frequencies which do not depend on the units used. It is convenient to consider all parameters in atomic units. The energy unit Hartree is $E_H = m_e a^4/h^2 = e^2/a_B$, where a_B is the Bohr radius ($E_H = 2$ Ry = 219 475 cm$^{-1}$). In these units all electron energies (E_e/E_H) and electrostatic potentials ($U(r)/E_H$) have no dependence on the fundamental constants (here we neglect small relativistic corrections which give a weak α dependence), the vibrational intervals $\sim \mu^{-1/2}$ and the rotational intervals $\sim \mu^{-1}$. The inversion frequency $\omega_{\text{inv}}^0/E_H$ and constants $c_{1,2}/E_H$ are also functions of μ only (see below). Note that the coefficients c_i depend on μ through the reduced mass of the inversion mode and because they are inversely proportional to the molecular moments of inertia. That implies a different scaling of ω_{inv}^0 and c_i with μ. The magnetic hyperfine structure of NH$_3$ is due to the interaction of nuclear magnetic moments and proportional to $\alpha^2 g_N^2 \mu^2$.

We see that different frequencies in the inversion spectrum scale differently with μ and α. In principle, this allows one to study time variation of μ and α by comparing different lines of the inversion spectrum. On the other hand, it may be preferable to use independent references (see below).

Inversion Hamiltonian.—The inversion spectrum (4) can be approximately described by the following Hamiltonian:

$$H_{\text{inv}} = -\frac{1}{2M_1}\delta^2_{x} + U(x) + \frac{1}{I_1(x)}[J(J+1) - K^2] + \frac{1}{I_2(x)}K^2,$$

(5)

where x is the distance from N to the H plane, I_1, I_2 are moments of inertia perpendicular and parallel to the molecular axis, correspondingly, and M_1 is the reduced mass for the inversion mode. If we assume that the length d of the N–H bond does not change during inversion, then $M_1 = 2.54m_p$ and

$$I_1(x) = \frac{3}{2}m_p d^2\left[1 + 0.2(x/d)^2\right],$$

(6)

$$I_2(x) = 3m_p d^2\left[1 - (x/d)^2\right].$$

(7)

The dependence of $I_{1,2}$ on x generates a correction to the potential energy of the form $C(J, K)x^2/\mu$. This changes the vibrational frequency and the effective height of the potential barrier, therefore changing the inversion frequency ω_{inv} given by Eq. (4).

Following [15] we can write the potential $U(x)$ in (5) in the following form:

$$U(x) = \frac{1}{2}kx^2 + b \exp(-cx^2).$$

(8)

Fitting vibrational frequencies for NH$_3$ and ND$_3$ gives $k = 0.7598$ a.u., $b = 0.05684$ a.u., and $c = 1.3696$ a.u. Numerical integration of the Schrödinger equation with potential (8) gives the following result:

$$\frac{\delta \omega_{\text{inv}}}{\omega_{\text{inv}}} \approx -4.46 \frac{\delta \mu}{\mu},$$

(9)

It is instructive to reproduce this result from an analytical calculation. In the semiclassical approximation the inversion frequency is estimated as [16]

$$\omega_{\text{inv}} = \frac{\omega_v}{\pi} \exp(-S)$$

$$= \frac{\omega_v}{\pi} \exp\left(-\frac{1}{\hbar} \int_{-a}^{a} 2M_1(U(x) - E)dx\right).$$

(10a)

(10b)

where ω_v is the vibrational frequency of the inversion mode, S is the action in units of \hbar, $x = \pm a$ are classical turning points for the energy E. For the lowest vibrational state $E = U_{\text{min}} + \frac{1}{2} \omega_v$. Using the experimental values $\omega_v = 950$ cm$^{-1}$ and $\omega_{\text{inv}} = 0.8$ cm$^{-1}$, we get $S = 5.9$.

Expression (10b) allows one to calculate the dependence of ω_{inv}^0 on the mass ratio μ. Let us present S in the following form: $\omega_{\text{inv}}^0 = A \mu^{1/2} \int_{-a}^{a} \sqrt{(U(x) - E)/E_Hd(x/a_B)}$, where A is a numerical constant. We see that the dependence of ω_{inv}^0 on μ appears from the factor $\mu^{1/2}$ in S and from the vibrational frequency ω_v and $E - U_{\text{min}} = \frac{1}{2} \omega_v$ which are proportional to $\mu^{-1/2}$. Below we assume that all energies are measured in atomic units and omit the atomic energy unit E_H. Then we obtain
where we took into account that $\frac{\partial S}{\partial a} = 0$ because the integrand in (10b) turns to zero at $x = \pm a$.

It is easy to see that $\frac{\partial S}{\partial \mu} = S/2\mu$. The value of the third term in Eq. (11b) depends on the form of the potential barrier:

$$\frac{\partial S}{\partial E} = -\frac{q}{4} \frac{S}{U_{\text{max}} - E},$$

(12)

where for the square barrier $q = 1$, and for the triangular barrier $q = 3$. For a more realistic barrier shape $q = 2$. Using parametrization (8) to determine U_{max} we get

$$\frac{\delta \omega_{\text{inv}}^0}{\omega_{\text{inv}}^0} = -\frac{\delta \mu}{2\mu} \left(1 + S \frac{\omega_v}{2 U_{\text{max}} - E} \right) = -4.4 \frac{\delta \mu}{\mu}.$$

(13)

We see that the inversion frequency of NH$_3$ is an order of magnitude more sensitive to the change of μ than typical vibrational frequencies. The reason for this is clear from Eq. (13): it is the large value of the action S for the tunneling process.

Let us also find the dependence of the constants $c_{1,2}$ on μ in Eq. (4). According to Eqs. (5)–(7) both constants must have the same dependence on μ. Below we focus on the constant c_2, which is linked to the last term in the Hamiltonian (5). It follows from Eq. (7) that this term generates a correction to the potential:

$$\delta U(x) = \frac{K^2}{3m_\rho a^4} x^2.$$

(14)

This correction does not change the height of the barrier, but changes the energy $E = U_{\text{min}} + \frac{K^2}{3m_\rho a^4} x_0^2$. (15)

$$\omega_v \rightarrow \omega_v \left(1 + \frac{K^2}{3m_\rho a^4 k} \right).$$

(16)

With the help of Eq. (12) with $q = 2$ we can find the constant c_2:

$$c_2 = \frac{\omega_{\text{inv}}^0}{3m_\rho a^4 k} \left(1 + \frac{k x_0^2 + \omega_v}{U_{\text{max}} - E} \right).$$

(17)

We can differentiate Eq. (17) to estimate how c_2 depends on μ. This leads to $\delta c_2/c_2 = -5.0 \delta \mu/\mu$, while the numerical solution with the Hamiltonian (5) gives

$$\frac{\delta c_{1,2}}{c_{1,2}} = -5.1 \frac{\delta \mu}{\mu}. $$

(18)

It is clear that NH$_3$ is not the only molecule with enhanced sensitivity to variation of μ. Similar enhancement should take place for all tunneling transitions in molecular spectra. For example, the inversion frequency for a ND$_3$ molecule is 15 times smaller than for NH$_3$, and Eq. (10a) leads to $S = 8.4$, compared to $S = 5.9$ for NH$_3$. According to Eq. (13) that leads to a slightly higher sensitivity of the inversion frequency to μ (see also [9]):

$$\text{ND}_3:\ \begin{cases}
\delta \omega_{\text{inv}} \approx -5.7 \frac{\delta \mu}{\mu} \\
\delta c_2 \approx -6.2 \frac{\delta \mu}{\mu}
\end{cases}$$

(19)

Redshifts for molecular lines in the microwave spectra of B0218 + 357

In astrophysics any frequency shift is related to a corresponding apparent redshift:

$$\frac{\delta \omega}{\omega} = -\frac{\delta z}{1 + z}.$$

(20)

The relative effects are substantially larger if we compare the inversion transitions with the transitions between the quadrupole and magnetic hyperfine components. However, in practice this method will not work because of the smallness of the hyperfine structure compared to typical linewidths in astrophysics.

It is more promising to compare the inversion spectrum of NH$_3$ with rotational spectra of other molecules, where

$$\frac{\delta \omega_{\text{rot}}}{\omega_{\text{rot}}} = -\frac{\delta \mu}{\mu}.$$

(21)

In astrophysics any frequency shift is related to a corresponding apparent redshift:

$$\frac{\delta \omega}{\omega} = -\frac{\delta z}{1 + z}.$$

(22)

According to Eqs. (9) and (21), for a given astrophysical object with $z = z_0$ variation of μ will lead to a change of the apparent redshifts of all rotational lines $\delta z_{\text{rot}} = (1 + z_0) \delta \mu/\mu$ and corresponding shifts of all inversion lines of ammonia $\delta z_{\text{inv}} = 4.46(1 + z_0) \delta \mu/\mu$. Therefore, comparing the apparent redshift for NH$_3$ with the apparent redshifts for rotational lines we can find $\delta \mu/\mu$:

$$\frac{\delta \mu}{\mu} = 0.289 \frac{z_{\text{inv}} - z_{\text{rot}}}{1 + z_0}.$$

(23)

In Table I we list the redshifts for microwave lines in the spectrum of the object B0218 + 357. Three inversion lines $(J, K) = (1, 1), (2, 2),$ and $(3, 3)$ are reported in Ref. [11]. Each of them consists of a narrow redshifted and a wide blueshifted component. The splitting between the redshifted and blueshifted components, which is about
and maximal values for both estimates: As a final result we present a conservative limit with larger molecular lines from HRefs. [11–13]. As mentioned in [12], the majority of dedicated analysis of the molecular spectra published in HCO

Equation (23) gives the following estimate for variation of 5

inversion lines, and hydrogen hyperfine line in the spectrum of B0218 + 357.

\begin{table}[h]
\centering
\caption{Redshifts for molecular rotational lines, ammonia inversion lines, and hydrogen hyperfine line in the spectrum of B0218 + 357.}
\begin{tabular}{|c|c|c|}
\hline
& Rotational lines & \\
\hline
\textbf{CO} $J = 1 \rightarrow 2$ & Redshifted 0.684 70 & [12] \\
& Blueshifted 0.684 63 & [12] \\
\hline
\textbf{CO, HCO$^+$, HCN} & Average 0.684 466 (1) & [17] \\
\hline
\textbf{Inversion lines of NH$_3$} & \\
\hline
\textbf{NH$_3$} $(J, K) = (1, 1)$ & Redshifted 0.684 679 (3) & [11] \\
& Blueshifted 0.684 649 (15) & [11] \\
= $(2, 2)$ & Redshifted 0.684 677 (3) & [11] \\
& Blueshifted 0.684 650 (17) & [11] \\
= $(3, 3)$ & Redshifted 0.684 673 (3) & [11] \\
& Blueshifted 0.684 627 (33) & [11] \\
& Average redshifted 0.684 676 (3) & \\
& Average blueshifted 0.684 647 (11) & \\
\hline
\textbf{H} & \\
\hline
$\lambda = 21$ cm average & 0.684 664 (4) & [18] \\
\hline
\end{tabular}
\end{table}

5 km/s, is ascribed to the complicated structure of the molecular cloud [11]. Using average redshifts of these inversion components [0.684 676 (3) and 0.684 647 (11)] from Table I we can calculate the average deviation of the inversion redshift in respect to the average molecular redshift [0.684 664 (1)]:

\begin{equation}
\Delta z_{\text{av}}^{\text{unweighted}} = (0.2 \pm 0.9) \times 10^{-5},
\end{equation}

\begin{equation}
\Delta z_{\text{av}}^{\text{weighted}} = (0.6 \pm 0.9) \times 10^{-5}.
\end{equation}

Equation (23) gives the following estimate for variation of μ:

\begin{equation}
\frac{\delta \mu}{\mu} = 10^{-6} \times \begin{cases}
0.3 \pm 1.6 & \text{(unweighted),} \\
1.1 \pm 1.5 & \text{(weighted).}
\end{cases}
\end{equation}

As a final result we present a conservative limit with larger error bars to cover the total interval between the minimal and maximal values for both estimates:

\begin{equation}
\frac{\delta \mu}{\mu} = (0.6 \pm 1.9) \times 10^{-6}.
\end{equation}

We can also compare averaged redshift for ammonia with that of hydrogen to get a restriction on the variation of the parameter $y = \frac{z_{\text{av}} - z_{\text{int}}}{1 + z_0}$:

\begin{equation}
\frac{\delta y}{y} = (1 \pm 17) \times 10^{-6}.
\end{equation}

The estimates (26)–(28) can be further improved by dedicated analysis of the molecular spectra published in Refs. [11–13]. As mentioned in [12], the majority of molecular lines from B0218 + 357 have two velocity components. The same applies to the hydrogenic 21 cm line [19]. Instead of taking an average, as we have done in (26)–(28), all redshifted and all blueshifted components should be analyzed independently. That may allow one to reduce the error bars significantly.

We thank M. Kuchiev for helpful discussions and J. Ginges for reading the manuscript. This work is supported by the Australian Research Council, Godfrey Fund and Russian Foundation for Basic Research, Grant No. 05-02-16914.